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Public Summary  
Wetlands are widely recognized as important ecosystems that provide critical services for natural 
communities and human society, including nutrient cycling, wildlife habitat and provisioning, 
water storage & filtration, carbon sequestration, and agriculture & recreation. Wetlands 
challenge our current scientific capacity because of their sheer number, their wide range of sizes, 
and their dynamic nature. As a result, wetlands are understudied compared to other ecosystem 
types. However, wetlands are thought to be among the most sensitive ecosystems to climate 
change, so the dearth of scientific resources has accelerating consequences going forward. Our 
goal in this project was to address the deficiency in wetland resources by developing new 
approaches and technical tools to better understand wetlands in general and to more effectively 
manage and conserve wetlands under a changing climate. By focusing our efforts on a range of 
wetland types, our goal was to better characterize landscape-scale climate change impacts to 
wetlands across the Pacific Northwest region in support of ongoing assessment and adaptation 
efforts. Our approach was designed in collaboration with natural resource managers, and 
involved three methodological advances. First, using remote sensing approaches, we developed 
new methods for mapping wetlands and reconstructing historical wetland hydrologic dynamics. 
Second, we used the Variable Infiltration Capacity model, a regional-scale hydrologic model, to 
hindcast historical wetland dynamics and project the future impacts of climate change on 
wetlands. Third, we linked these approaches with ecological data to evaluate the impacts and risk 
of climate change to several classes of wetlands across three ecoregions of Washington state. In 
the process we developed or collected multiple new datasets on wetland distributions, dynamics, 
and species occupancy. This work has broad societal value in deepening our understanding of 
wetland dynamics over time; creating new tools that enable better management and conservation 
of wetlands and the ecological services that they provide; and enriching conservation and climate 
adaptation planning efforts with resource and evidence-based decision power.  
 



Technical Summary 
The goals of our project were to 1) develop remote-sensing methods to monitor wetland 
dynamics and build historical datasets of wetland hydroperiod and areal extent, 2) establish focal 
field sites over diverse ecoregions and collect key hydrologic data to support the validation of 
hydrologic models and remote sensing applications, 3) advance hydrologic modeling of climate 
impacts on wetlands by extending existing work to provide more detailed modeling of 
hydroperiod for focal sites, and incorporate water temperature dynamics, 4) develop ecological 
models to relate hydrologic changes to impacts on wetland communities, and 5) synthesize these 
approaches to connect downscaled climate model projections to wetland impacts at the landscape 
scale. Funding from the Northwest Climate Science Center made it possible to meet each of the 
goals of the project and develop a new and well-integrated suite of hydrologic methods and data 
resources to advance the field. In addition to tangible products, the research process and 
outcomes have given us a much clearer sense of the constraints and opportunities for further 
research development by highlighting, for example, where macroscale hydrologic models do and 
do not work in reconstructing historical wetland dynamics and thus projecting future climate 
impacts; the spectrum of remote-sensing resources needed for different levels of accuracy in 
wetland mapping and remote classification; and key questions to further explore regarding 
patterns and drivers of hydrologic change and their ecological implications. Major research 
accomplishments include the successful testing of the first suite of macroscale projections of 
climate impacts to wetlands; novel approaches for reconstructing hydrologic data for 1000’s of 
ponds that would otherwise be lost in time; and synthesis of these approaches for application to 
wetland adaptation planning in our study regions. These advances are unique in wetlands science 
and help point towards ways forward in research, conservation, and management.  
 
 
 
 
Note: Portions of Sections 2, 3, and 4 under the headings “Remote-Sensing of Wetlands” and 
“Climate-Hydrologic Modeling” are excerpted and condensed from Halabisky et al. in review 
and Lee et al. in review respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



EXECUTIVE SUMMARY 
 
Purpose & Objectives 
Objective 1: Develop remote-sensing methods to monitor wetland dynamics, past and present. 
Objective 2: Establish focal field sites over diverse ecoregions. 
Objective 3: Advance hydrologic modeling of climate impacts on wetlands. 
Objective 4: Develop ecological models to relate hydrologic patterns with species occupancy. 
Objective 5: Synthesize these approaches to connect climate projections to wetland impacts at 
the landscape scale. 
 
Geographic Scope 
We focused on seven focal areas 
of Washington State, spanning 
montane and alpine regions of 
the Cascade and Olympic 
mountains, arid lands of the 
Columbia Plateau, and Puget 
Sound lowlands forest.  
 
Advances & Key Findings 
Remote Sensing: We developed 
new methods for mapping and 
classifying wetlands using 
remotely sensed data, which 
significantly improve upon existing wetland inventories. We also developed new methods for 
reconstructing historical hydroperiods that generated detailed and unique datasets on wetland 
hydrologic dynamics (e.g. 25 years of reconstructed hydroperiod data for 2,475  ponds). These 
data begin to address the severe dearth of historical data on wetland dynamics, making it possible 
to assess baselines and develop physically-based models needed to project climate impacts. 
Field Monitoring: We collected three years of field data on wetland hydrology and amphibian 
habitat use, and developed a new method of water depth monitoring using iButton dataloggers.  
Climate-Hydrologic Modeling: We developed the first macroscale models of wetland 
dynamics, using the Variable Infiltration Capacity (VIC) hydrologic model. We used the VIC 
model linked to downscaled climate projections to develop the first projections of climate 
impacts to wetlands at regional scales. We applied this approach to wetlands in three ecoregions. 
Ecological Modeling: We found species-specific variation in habitat use, with all species at risk 
of some habitat loss due to climate change, most notably the Cascades frog. 
Synthesis: Wetland habitats used by amphibians are both the most poorly mapped and the most 
vulnerable to climate change. The distribution of hydrologic risk varies with geography. 
 
Management Products 
Remote-sensing: New wetland inventories, reconstructed hydroperiod datasets, and new remote-
sensing approaches that can be applied in other regions and to additional wetland types. 
Field Monitoring: Datasets can support additional wetland species and hydrologic assessments. 
Climate-Hydrologic Modeling: Climate projections specific to wetland change. 
Ecological Modeling & Synthesis: Maps of high-risk areas of amphibian habitat loss. 



1. Purpose and Objectives 
Our project addressed central questions of wetland hydrology, ecology, conservation, and 
management. We focus on lentic habitats, i.e. ponds, lakes, and shallow wetlands. We serve 
multiple communities: 1) basic researchers in need of more robust scientific approaches for 
studying wetlands and generating and testing hypotheses about wetland hydrology, historical 
dynamics, and future climate impacts, 2) managers seeking to develop conservation, 
management, and climate adaptation plans for wetlands, 3) policymakers seeking scientific 
evidence on which to base decisions regarding wetland regulations and protection, and 4) the 
general public whose day to day life is influenced in direct and indirect ways by wetlands and the 
ecosystem services that they provide.  
 
Original Objectives  
By focusing our collective efforts on a range of wetland types throughout the region, our ultimate 
goal was to explicitly characterize landscape-scale climate change impacts to wetland 
habitats in three diverse ecoregions of the Pacific Northwest (PNW) that span representative 
ecoregions in the NPLCC and GNLCC domains and the PNW as a whole. Specific research 
objectives and their status are described below. 
 
Objective 1: Develop remote-sensing methods to monitor wetland dynamics and build historical 
datasets of wetland hydroperiod and areal extent. 
Status & Changes: Objective met. There were no substantial changes to our research plan from 
the original. 
 
Objective 2: Establish focal field sites over diverse ecoregions, collecting key hydrologic & 
empirical data to support the validation of models and remote sensing applications. 
Status & Changes: Objective met. One minor change to our research plan included the use of 
data collected by collaborators to calibrate the VIC model for these sites after our water depth 
dataloggers in Puget Sound lowland field sites were disturbed by animals (including humans). 
The replacement sites were in nearby wetlands and provide empirical data of comparable or 
higher data resolution to what we had proposed to collect. 
 
Objective 3: Advance hydrologic modeling of climate impacts on wetlands by extending 
existing work to provide detailed modeling of hydroperiod for focal field sites, and incorporating 
water temperature dynamics to support ecological modeling. 
Status & Changes: Objective met. There were no substantial changes to our research plan from 
the original. Detailed results and the implications of these results are described below. 
 
Objective 4: Develop ecological models to relate hydrologic changes to impacts on wetland 
communities. 
Status & Changes: Our preliminary analyses meet our objectives for identifying amphibian-
habitat associations in montane sites. Over the next few months we will be refining our analyses 
using more sophisticated modeling approaches than those presented here, hence models 
published in peer-reviewed journals will be extensions of this work. There were no substantial 
changes to our research plan from the original. 
 



Objective 5: Synthesize these approaches to connect downscaled climate model projections to 
wetland impacts at the landscape scale. 
Status & Changes: Objective met for montane sites. The equivocal results from our climate-
hydrologic modeling exercise for the Columbia Plateau means that we cannot make a high-
confidence assessment of future impacts for amphibians, thus have instead presented key 
questions stemming from what we do know to consider as this research moves forward.  
 
2. Organization and Approach  
 
Our approach integrates research methods and products developed at multiple spatial scales. We 
focus on three ecoregions of the Pacific Northwest (Figure 2.1): montane ponds and lakes in the 
Cascade and Olympic mountains, a wide range of wetlands in the Columbia Plateau, and a 
selection of forested wetlands in Puget Sound lowlands along Chuckanut Ridge near Bellingham. 
Focal regions in the mountains include Upper Lena Lake region and Seven Lakes Basin and 
adjacent regions (Deer Lake, Potholes, Wye Lakes) of Olympic National Park; Palisade Lakes, 
Spray Park, and Mazama Ridge within Mount Rainier National Park; and Dagger Lake region 
and select individual ponds adjacent to Highway 20 in North Cascades National Park. In the 
Columbia Plateau, focal regions include Douglas County, Swanson Lakes Wildlife Area, and 
Turnbull Lakes National Wildlife Reserve. Puget lowlands sites are found on Chuckanut Ridge 
south of Bellingham. In montane and Columbia Plateau regions, we modeled and classified 
wetlands using remote sensing methods, with advanced analyses in the Columbia Plateau. We 
modeled the historical hydrologic dynamics and projected future dynamics under climate change 
for a suite of wetlands across all three regions. We collected on-the-ground hydrologic and 
ecological data in focal montane sites. Products developed from each part of the project can be 
used independently, and have been synthesized to assess the vulnerability of montane 
amphibians to climate change as a case study. Our approach did not change substantially from 
the original approach outlined in our research proposal. However, as the research progressed we 
developed a more 
detailed approach 
and responded to 
our findings in an 
iterative way, as 
described below. 
 
 
 
 
 
 
 
 
Figure 2.1 
Focal field regions 
for the Northwest 
Climate Science 
Center project. 



 
2.1 Remote-Sensing of Wetlands 
For this project we developed two new remote sensing methods to map and characterize 
wetlands. The first technique uses high resolution datasets (multiple years of aerial imagery, 
LiDAR, and thematic layers) to automate the delineation and classification of wetlands in 
montane sites. This method relies on object based image analysis (OBIA), a technique that 
simulates human pattern recognition (Blaschke 2010). The second remote sensing method 
combines high resolution imagery with a time series of Landsat satellite imagery to reconstruct 
surface water hydrographs for individual wetlands in the focal regions of the Columbia Plateau 
over the past thirty years.  
 
Montane Wetlands 
Mountainous landscapes represent particular challenges for remote sensing analysts due to the 
effect of shadows caused by steep topography and tree canopy, which are present in any given 
date of aerial imagery. Shadows obscure wetlands while the tree canopy itself can directly block 
the visibility of wetlands underneath. This creates confusion in images because the pixels for the 
cast shadow may have the same spectral signature as that of the wetlands containing water. In 
addition, mountains are covered in snowfields, which have different spatial extents at different 
times of the year. In years with heavy or late season snowfall some wetlands may never be 
exposed or completely snow-free. Mapping wetlands in these landscapes is challenging as one 
needs to acquire imagery that not only takes into account the timing of wetlands drying, which 
begins early in the season, but also the presence of snowfields, which can persist late into the 
season. Because montane wetlands fall on an elevational gradient some wetlands may be under 
snow in high elevations, while others may be completely dried out. As a result of these inherent 
complexities, wetland inventories in these landscapes often omit large numbers of wetlands or 
have substantial classification errors. Looking forward, current mapping techniques do not 
provide detailed wetland hydrologic information necessary for making climate change 
projections and landscape level assessments.  

We had two objectives in developing methods for mapping wetlands in montane 
landscapes. The first was to assess the accuracy of using object based image analysis to delineate 
wetland ponds with the addition of LiDAR derived data products. Secondly, we wanted to 
identify remote sensing variables that could be used to identify the rate of wetland drying 
specific to each wetland.  
 
Object based image analysis 
Object based image analysis is a remote sensing technique that mimics the way that humans 
identify objects through pattern recognition. OBIA differs from other remote sensing techniques 
by aggregating pixels with similar characteristics into objects through a process called 
segmentation (Blaschke 2010). Because landscape features are analyzed as objects and not just 
pixels, OBIA allows for the use of additional factors such as shape, texture, and context. The 
analyst then builds a ruleset using these factors to classify objects into the classes of interest 
(Figure 2.1.1). The ruleset can then be run on the entire landscape through batch processing. We 
used Trimble’s eCognition software to develop our OBIA algorithm ruleset. Because our two 
rulesets includes over 100 rules it cannot be explained in detail here. The entire ruleset is 
included in Appendix A and is available upon request. 
 



 
 
Figure 2.1.1: Example of OBIA classification process. The left hand image demonstrates the 
segmentation process. Objects are delineated in blue. The right hand image shows the 
classification output. Blue polygons represent ponds, green polygons represent wetland 
vegetation, light blue lines represent streams, and dark green polygons represent tree canopy.  
 
Wetland Algorithm 
We developed our algorithm using several LiDAR-derived data products, two dates of high 
resolution aerial imagery (2006 and 2009), and thematic data layers (roads and trail layers) for 
mapping wetlands in Mt. Rainier National Park. The spatial resolution of the LiDAR is 4-6 
points per meter. The LiDAR vendor provided a canopy surface model, a digital terrain model, 
and an intensity image. In addition to the vendor-provided data we created additional data input 
layers using the LiDAR digital terrain model. From the digital terrain model we created a slope 
index at one meter pixel resolution. We used a D-infinity hydrologic flow model to create a flow 
accumulation model and a topographic wetness index (TWI). We chose the D-Infinity model 
over the more traditional D-8 hydrologic flow model available as part of hydrologic tools in 
ArcGIS because it is more suitable for braided channels, which are common in the subalpine 
regions of Mt. Rainier. Next, we identified sinks found within the digital terrain model using 
spatial analysis tools in ArcGIS. Identifying sinks is typically an intermediary step in any flow 
accumulation model to locate any areas that have an internal drainage. By subtracting the sink 
raster from the original digital terrain model we created a new data layer that identified the depth 
of the sink. Finally, we subtracted the canopy surface model from the digital terrain model to 
create a canopy height model.  

In addition to the LiDAR derived data inputs we used a 2006 true color image and a 2009 
false color image freely available through the National Agriculture Inventory Program. Finally, 
we added two thematic layers; park roads and park trails. All of the raster data was scaled to 1 
meter and projected to the NAD 83 North UTM projection and uploaded into eCognition. 

 
Wetland Classification 
We developed a hierarchical classification mapping wetlands in two different related levels: 
wetland complexes and wetland components (ponds and wetland vegetation). To classify 
wetland components we first masked out all non-wetland areas. We mapped tree canopy using 
canopy surface model inputs and masked out roads and trails using thematic data layers provided 



by the park. Next we mapped streams using the flow accumulation models we created from the 
digital terrain model. We then mapped streams in areas with slopes less than 3 degrees as ponded 
streams. To map wetland ponds and wetland vegetation we ran a segmentation on the remaining 
pixels and classified objects using LiDAR intensity, depth of sinks, topographic wetness index, 
and both dates of aerial imagery. Additionally, for every date of imagery we used the spectral 
signature of deep water, taken from the center of deep ponds, to classify the deep and shallow 
water for every pond. For the 2008 LiDAR intensity imagery we classified deep water as regions 
of the pond where the water is deep enough to fully absorb the LiDAR. We exported out the 
wetland classification and descriptive statistics for each wetland complex and wetland pond.  
 
Methods Comparison 
We developed a second OBIA algorithm without using LiDAR-derived data inputs for the same 
area, Mt. Rainier National Park. We did this to compare the accuracy of adapting our method for 
areas without LiDAR data. Similar to the first algorithm we created hydrologic data products 
using a coarser 10 meter resolution digital elevation model (DEM). The 10 meter DEM was 
created by the USGS from 30 meter satellite imagery. We validated our classification outputs 
using data collected from 31 monitoring sites established in three areas of Mt. Rainier; Spray 
Park, Palisade Lakes, and Mazama Ridge.  
 
Predicting Pond Drying Rate 
We used the object statistics calculated on wetland complexes and their components, ponds and 
wetland vegetation, to determine if remote sensing variables could predict the slope of pond 
drawdown (i.e. percent change per each day during drawdown period). The slope of pond 
drawdown was derived from the field monitoring sites. We ran regression analysis using the 
descriptive statistics calculated from the input data layers; LiDAR intensity, depth of sinks, TWI, 
aerial imagery, slope index, flow accumulation model, digital terrain model, canopy height 
model, and the surface water area of the ponds as calculated for each date of imagery (2006, 
2008, 2009) against the slope of pond drawdown. 
 
Columbia Plateau Wetlands 
The Columbia Plateau ecoregion is a semi-arid environment in the northwest of the United 
States. Isolated, depressional wetlands are the dominant wetland type in this ecoregion. Refill of 
wetlands in this area is typically driven by snowmelt occurring in late winter or early spring. As 
the summer season progresses temperature levels increase and precipitation levels decline. 
Wetlands begin to dry out during this time, with many wetlands completely dry by the end of the 
summer. Short-term rainfall events occur sporadically during the spring and summer months and 
are usually localized in nature. Although the direct causes of hydrologic change is not clear, 
wetlands in the Columbia Plateau are already stressed from impacts caused by farming, grazing, 
and reduced groundwater levels. It is still uncertain how these cumulative pressures will affect 
projected climate change impacts. Because there is no long-term landscape level hydrologic data 
for wetlands in this ecoregion it is difficult to determine the current condition and function of 
wetlands in the Columbia Plateau. 

To reconstruct wetland hydrographs for all wetlands within our focal regions (Douglas 
County, Swanson Lakes Wildlife Area, and Turnbull Lakes National Wildlife Reserve) we used 
a two-step process using high resolution aerial imagery and a multi-date layer stack of Landsat 
satellite imagery spanning 27 years (1984 – 2011). A key objective was to create a product that 



could be used at multiple scales; from large landscape analysis to individual wetland monitoring, 
providing a tool for multi-scale resource management. For this method we relied on a technique 
called spectral mixture analysis (SMA), which identifies the fractional abundance of water 
within one Landsat pixel (J. B. Adams, Smith, & Johnson, 1986; Adams John B. & Gillespie, 
2006).  
 
Step 1: Wetland Delineation 
We evaluated existing wetland inventories for all three focal areas and determined that the one 
for Douglas County was inadequate as it had high error of omissions and did not line up well 
with wetlands on the ground. Therefore, for Douglas County, we used object based image 
analysis of high resolution aerial imagery to create a new wetland inventory. Halabisky et al. 
(2009) provides a detailed explanation of this method. The wetland inventory in Swanson Lakes 
Wildlife Area had recently been re-done using OBIA techniques and was sufficient for our 
purposes. The National Wetland Inventory for Turnbull Lakes National Wildlife Reserve did not 
have errors of omission, but did not line up with wetland boundaries on the ground. We stretched 
and shifted the dataset to correct this issue. The wetland inventories for Swanson Lakes Wildlife 
Area and Turnbull Lakes National Wildlife Reserve were provided by local land managers. The 
resulting three datasets included delineated wetland polygons denoting the boundaries of 
individual wetlands. 
 
Step 2: Reconstructing Surface Water Hydrographs 
We used the delineated wetland polygons from each dataset to extract surface water estimates 
derived from spectral mixture analysis. To do so, we overlaid each wetland polygon over 331 
Landsat satellite images spanning from 1984 – 2011 (the number of images available per site). 
For each data of imagery, we used SMA to identify the fractional abundance of water within 
each pixel within the polygon. Captured as a time series, we then used these results to reconstruct 
individual surface water hydrographs for 2,475 wetlands. Figure 2.1.2 provides an example of 
this two-step method. SMA results provide an estimate of surface water for each pixel within a 
wetland as well as a root mean square error, which demonstrates the fit of our SMA model. An 
RMS error with no distinguishable pattern suggests that the model represents all of the material 
components within a pixel and therefore accurately predicts surface water area for each pixel. 
 To validate our newly developed method we manually delineated surface water area for 
100 randomly selected wetlands in Douglas County using high resolution NAIP imagery flown 
in 2011 spanning 2 days (July 6 – July 7). We compared the validation dataset to SMA surface 
water estimates derived from a Landsat satellite imagery acquired on July 7, 2011. We chose to 
focus validation on Douglas County because the aerial imagery flown in 2011 matched up with 
cloud-free satellite imagery. The surface water area of the validation dataset ranged from 0 
(completely dry) to 22.48 hectares.  Maximum wetland sizes of the validation dataset, derived 
from the Landsat time series dataset, ranged from 900 square meters to 32 hectares. We also 
attempted to validate results using temperature dataloggers (iButtons) to measure approximate 
water levels and wetland extent, and dates of ice-free open water in fifteen focal wetlands 
throughout the Columbia Plateau.   
 In addition to testing the accuracy of wetland area we wanted to understand the accuracy 
of percent changes to surface water area. To do this we relativized surface water estimates for 
each date of imagery by their maximum inundation, which provided an estimate of the percent 
surface water area for each wetland. We also used the same maximum surface area to relativize 



the reference dataset. We compared the percent surface water from the SMA to the reference 
dataset to calculate the difference in percent changes. 

 Figure 2.1.2: Example of combining high resolution classification using OBIA and surface 
water outputs from SMA. Wetland complexes, including pond and wetland vegetation were 
buffered by 30 meters (top left). SMA results (top right) were summed for each wetland polygon 
to derive surface water estimates for a given date. The example on the bottoms shows the SMA 
results, including the RMS error for one wetland, 3.4 hectares in size.  
 

 
2.2 Monitoring of Focal Field Sites  
We implemented field monitoring of wetlands in three regions of the Cascade and Olympic 
Ranges, the Columbia Plateau, and Puget Sound lowlands. 
 
Montane wetlands 
We completed three field seasons (2012, 2013, and 2014), collecting detailed data on wetland 
hydrology (pond depths and spatial extent) and amphibian occupancy and development across 



different geographic regions of Mount Rainier, North Cascades, and Olympic National Parks. 
We worked with National Park Service biologists and managers to select multiple regions within 
each Park with clusters of wetlands where we could monitor a broad range of wetland types, 
while also keeping field costs for multiple visits per year within budget. One region (Seven 
Lakes Basin) is also a US Geological Survey Amphibian Research and Monitoring Initiative 
(ARMI) long-term study site. While our sites are not a random sample, they represent a broad 
diversity of geographies and wetland types found within each Park.  
 
Hydrologic monitoring 
We monitored pond hydrology using three methods: 1) physical water depth monitoring 
conducted through repeated site visits (2-6) over the course of the summer and fall for years 
2012 and 2013, 2) iButton temperature dataloggers to detect drying (2013-2014), 3) HOBO 
U20L water level dataloggers to capture high-resolution fluctuations in pond depth at select focal 
sites (2014).  

For our primary dataset used in developing climate-hydrologic models, we collected 
detailed data on wetland hydrology (wetland depths and spatial extent) for 121 montane 
wetlands, representing a mix of ephemeral, intermediate, perennial, and permanent ponds, 
through physical monitoring. In a subset of wetlands, we also estimated wetland depths using 
iButton temperature dataloggers. To do so, we installed iButtons along transects from the edge of 
the wetland to the deepest accessible point in the wetland. We identified the date at which 
wetland water levels dropped below each iButton based on changes in the variance in 
temperature (measured every two hours).  Because air temperatures fluctuate more dramatically 
than water temperatures, it is possible to compare temperatures of iButtons along each transect to 
iButtons placed in the open air adjacent to the wetland to determine when the iButton was 
submerged or exposed to the air. An example of iButton data from one transect is shown in 
Figure 2.2.1. Our physical depth measurements validated the estimates of water level derived 
from the iButton transects. This larger 2012 dataset supplemented several smaller historical  

 

 
Figure 2.2.1. Water temperature data from an iButton transect in Pothole D in Olympic National 
Park. Each colored line represents an iButton placed at a different depth. The high-amplitude 
fluctuations are those of iButtons that dried, and lower-amplitude fluctuations are those that 
remained submerged (yellow, orange, and bright green), showing that Pothole D did not dry 
completely. 



datasets that we also used in building the models described below.  These included 1) measured 
wetland water depths for 7 montane wetlands in Seven Lakes Basin, Olympic National Park 
from the summer of 2000, 2) wetland water volume estimates for 10 montane wetlands on 
Mazama Ridge, Mount Rainier National Park from June through September 1992 (Girdner & 
Larson, 1995), and 3) multiple years of observed wetland depth data for one intermediate and 
two perennial wetlands in Oregon (Pearl, pers. comm.) and one intermediate wetland in 
California (Garwood, pers.comm.; Garwood & Welsh 2007). In total we used data from 125 
wetlands in the modeling described below. All monitored or surveyed sites from 2012-2014 are 
listed in Appendix B. The HOBO data were not used in developing models because we do not 
yet have access to hydrologic model runs for 2014, but are an excellent resource for future 
research when updated VIC runs become available. 
 
Amphibian monitoring: Sampling design, field surveys, and monitoring of breeding success 
In the same suite of sites monitored for hydrologic change, we conducted amphibian visual 
encounter surveys in 2012 and 2013. Amphibian surveys focused on species presence and on key 
habitat attributes known or suspected to influence amphibian occupancy, habitat use (e.g. 
breeding versus foraging), and recruitment. We developed protocols in accordance with the US 
Geological Survey Amphibian Research and Monitoring Initiative’s approach. We focused on 
three common montane species: Rana cascadae (Cascades frogs), Ambystoma gracile 
(northwestern salamanders), and Ambystoma macrodactylum (long-toed salamanders). We noted 
any additional pond-breeding amphibian species of any life stage where they were present 
(Taricha granulosa, rough-skinned newt; Rana luteiventris, Columbia spotted frog; Pseudacris 
regilla, Pacific chorus frog; Bufo boreas, Western toad).   

To conduct visual encounter surveys, two-person teams carefully walked the perimeter of 
each pond and checked all microhabitats for amphibians (e.g. in the pond, under banks, stream 
inlets, in submerged or adjacent terrestrial vegetation) between 08:00 and 20:00 hours. During 
each survey, field crews recorded pond coordinates and the presence of any amphibian life stage 
(eggs, larvae or tadpoles, metamorphs, juveniles, terrestrial adults, paedomorphs, or dead 
animals of any stage). Crews also recorded habitat attributes that may be associated with 
amphibian occupancy, including elevation, pond dimensions (length and width to estimate 
circumference), depth, wetland type (lake, pond, or wet meadow), hydrologic class (ephemeral, 
intermediate, perennial, permanent), fish presence, percent shallows (flooded habitat <0.5m in 
depth), presence of emergent vegetation, substrate, presence of cobble, presence of downed 
wood, presence of complex side habitat, percentage of surrounding area that was wooded, and 
dominant types of emergent and riparian vegetation. Crews also recorded additional data on 
environmental factors that might further influence amphibian detection, including date, time of 
day, sky conditions, wind conditions, air temperature, water temperature, water presence, water 
depth, water color, water transparency, presence of predatory birds or snakes or invertebrates, 
and percentage of the pond perimeter successfully searched.  

The seasonal start to surveys was determined by ice-out of the ponds, which we tracked 
carefully at the beginning of each season via communication with National Park Service rangers 
and field crew reconnaissance. In 2012, surveys began in late June and concluded in late 
October. We surveyed each site for the presence of amphibians between one and six times, with 
the majority of sites receiving three or four surveys. A subset of our sites is part of a long-term 
demographic study of Rana cascadae, and we surveyed these sites up to six times. In 2013 
surveys began in July and ended in late September. In 2013, we conducted a smaller number of 



visual encounter surveys and focused on tracking developmental rates of Rana cascadae tadpoles 
and evidence of mortality as ponds dried. To do so, we staged tadpoles according to their Gosner 
stage, and noted any evidence of mortality (e.g. dried egg masses or dried tadpoles). In 2014 our 
field season began in June and ended in late September but we did not conduct visual encounter 
surveys and instead focused on intensively tracking Rana cascadae breeding effort and success, 
focusing on egg deposition, tadpole development, and tadpole survival or mortality in drying 
ponds. In all three years (2012-2014), we closely tracked developmental rates of Rana cascadae 
tadpoles and evidence of mortality of any species as ponds dried.  
 
Columbia Plateau  
Hydrologic monitoring 
We placed over two hundred temperature dataloggers (iButtons) to measure approximate water 
levels and wetland extent, and dates of ice-free open water in fifteen focal wetlands throughout 
the Columbia Plateau. These dataloggers were placed in Fall 2012 and Spring of 2013. All of the 
iButtons in the Columbia Plateau were retrieved in Fall 2013.  

 
Puget Sound Lowlands 
Hydrologic monitoring 
We monitored three ponds in the Puget Sound lowlands (Chuckanut Ridge, Bellingham region) 
using a combination of iButtons and physical measurements through the spring and summer of 
2013. At two sites, iButton transects were disturbed by animals (humans and mink), disrupting 
data collection. Through outreach to collaborators Michele Bodkhe and Victoria Jackson of 
Northwest Ecological Services, we identified an existing dataset (collected biweekly from 
December 2005 to November 2006) for seven wells in four wetland complexes (ponds and 
saturated wetland areas) in the same region, and used those data in place of the iButton data. This 
is an improvement over our original plan, since VIC simulations are only available currently in 
our region through 2012, so the data we were collecting would not have been useful in testing 
and calibrating the VIC model for Puget lowland sites until future years. With our collaborators’ 
dataset we were able to test and calibrate the VIC using existing simulations. 
 
2.3 Climate-Hydrologic Modeling  
Montane Wetlands 
In previous work under our North Pacific Landscape Conservation Cooperative grant, we 
developed methods for projecting climate-induced hydrologic changes for montane wetlands in 
Washington, Oregon, and California by using regression models that related observed wetland 
water levels to the best predictor among simulations of ecologically relevant water balance 
variables (such as precipitation, soil moisture, runoff, baseflow, and evapotranspiration) from the 
Variable Infiltration Capacity (VIC) macroscale hydrologic model implemented at 1/16th degree 
resolution (Elsner et al., 2010, Hamlet et al., 2013). In this project, we extended and refined this 
previous work using newly collected, more extensive hydrologic datasets collected a) in focal 
field sites in the mountains and b) from remote sensing-derived data in the Columbia Plateau, 
described above. For montane regions, we also developed the relationship between the slope of 
pond drawdown (i.e. percent change per each day during the drawdown period) and pond drying 
or minimum water level of ponds to classify the wetland type and evaluate shifts in the 
distribution of wetland types under climate change.  



The additional year of data on wetland hydrology (from 2012) allowed us to better 
characterize inter-annual hydrologic variation in response to climate and evaluate the ability of 
the VIC model to capture this important form of variation. A description of the complete suite of 
approaches is described below (from Lee et al. in review). 
 
Wetland classification 
We define wetlands broadly as any area where shallow surface water collects. Wetlands exist on 
a hydrologic continuum and many different methods of wetland classification exist (e.g. 
Cowardin, hydrogeomorphic or HGM). We use a simple hydrologic classification scheme based 
on hydroperiod and wetland sensitivity to climate variability to characterize four ecologically 
relevant types of wetlands – ephemeral, intermediate, perennial, and permanent (Table 2.3.1). 
This approach relates inherently continuous hydrologic variation in water permanence and 
periodicity to more discrete ecological thresholds determined by species’ development and life 
history requirements (e.g. number of months or years that ponds must hold water for an insect, 
frog, or salamander to develop and metamorphose) (Girdner & Larson 1995, Tarr & Babbitt 
2008).  
 
Table 2.3.1. Hydrologic Classification of Montane Wetland Types 
 
Wetland 
Classification 

Hydrologic Characteristics Ecosystem Characteristics 

Ephemeral 
 
 

Ephemeral or short-hydroperiod 
wetlands dry in most years, in 
some cases soon after the 
cessation of snowmelt or 
seasonal rains.  

Ephemeral montane wetlands are not used 
by many animals due to their extremely 
brief inundation, but may support wetland 
plants. 

Intermediate Intermediate-hydroperiod 
wetlands tend to dry in late 
summer or early fall in years 
with low precipitation. During 
relatively wet years, they hold 
water year-round. Water levels 
fluctuate considerably in 
summer. 

Intermediate-hydroperiod wetlands support 
populations of fast-developing amphibians, 
invertebrates with resting egg stages that 
can survive desiccation, migratory birds, 
mesopredators, and wetland-obligate 
plants. 

Perennial Perennial wetlands do not dry 
except in the most extreme dry 
years, but often lose a substantial 
percentage of their volume 
during dry periods. 

Perennial wetlands often support the 
greatest diversity and abundance of 
amphibians and invertebrates, including 
fast-developing species and those that 
require multiple years to complete larval 
development in high elevation 
environments, while lacking predators such 
as introduced fish that often reduce species 
diversity (Bahls 1992). Wetland-obligate 
plants, birds, and mesopredators, may also 
rely on perennial wetlands. 

Permanent Permanent wetlands do not dry Permanent wetlands support a broad range 



and lose a relatively small 
percentage of their volume even 
during unusually dry periods. 

of mammals and birds, and can be used by 
the full suite of wetland-breeding 
amphibians and most invertebrates, though 
increased predation (by native and 
introduced predators) limits actual 
occupancy. Primary poductivity depends in 
part on the amount of shallow littoral 
habitat. Wetland macrophytes are common. 

 
Quantitatively we define the four wetland types based on average minimum water levels. 
Generally shallow ephemeral wetlands dry completely or drop, on average, below 3% of their 
maximum water levels. Intermediate wetlands drop to between 3% and 33% of their maximum 
water levels on average and may dry in some years. Perennial wetlands drop to a mean of 33% 
to 70% of their maximum water levels and only in extreme droughts do they dry completely. For 
permanent wetlands (lakes and large ponds), the average minimum water levels generally 
remain greater than 70% of their maximum water levels and are never dry in the historical 
record. These four types represent general hydrologic classes of wetlands that can be related to 
more detailed hydrogeomorphic wetland-classification systems such as those used in U.S. 
Natural Heritage programs and for conservation decision making (WDNR 2011; Hruby 2006). 
 
Observed wetland data 
Observed wetland data 
collection is described in 
Section 2.2 above. Regions 
of study used in the 
montane wetland analysis 
are depicted in Figure. 
2.3.1. Figure 2.3.2 shows 
focal field sites with 
multiple years of 
hydrologic data. All sites 
used for hydrologic 
modeling are listed in Table 
2.3.2. 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.3.1. Regions with observed wetland data used to 
calibrate montane wetland models. 



 
Figure 2.3.2. Locations of a selection of focal field sites in Seven Lakes Basin in Olympic 
National Park (left) and Mazama Ridge/High Lakes in Mount Rainier National Park (right) with 
multiple years of hydrologic data. Points indicate the pond type: red is ephemeral, orange is 
intermediate, green is perennial, and blue is permanent. 
 
Table 2.3.2. Summary of observed wetland data used in montane wetland climate-hydrologic 
modeling. 
 

 Type  Period 
Number of Wetlands 

Data Source 
Ephemeral Intermediate  Perennial Permanent 

Mt. Rainier 
National Park, 
WA 

Vol. Year 
1992  –           – 5 5 Girdner & Larson 

(1995) 

Depth Year 
2012 

4 9 4 13 Field Measurement,  
M. Ryan 

2 – 2 1 iButton, M. Ryan 

Olympic  
National Park, 
WA 

Depth 

Year 
2000 1 – 4 1 Field data, W. Palen 

Year 
2012 

17 19 20 21 Field Measurement,  
M. Ryan 

1 – 4 – iButton, M. Ryan 

North 
Cascades 
National Park, 
WA 

Depth Year 
2012 

2 – – 1 Field Measurement,  
M. Ryan 

– – – 1 iButton, M. Ryan 

Willamette 
National 
Forest, OR 

Depth 
Years 
2003- 
2006 

– 1 1 – Field Measurement,  
C. Pearl 

Deschutes 
National 
Forest, OR 

Depth 
Year 

2003 & 
2006 

– – 1 – Field Measurement, 
C. Pearl 

Trinity Alps 
Wilderness, 
CA 

Depth 
Years 
2003 – 
2007 

– 1 – – Field Measurement, 
J. Garwood 

 



Macro-scale hydrologic model  
To hindcast over a large number of retrospective years and to project climate-induced hydrologic 
change, we used the macro-scale Variable Infiltration Capacity (VIC) hydrologic model 
(Cherkauer et al. 2003; Liang et al. 1994), implemented at 1/16th degree resolution (roughly 5 
km by 7 km) over the Pacific Northwest (PNW) and California (CA). The PNW model 
implementation, historical simulations, and climate change scenarios are described in detail by 
Elsner et al. (2010), Hamlet et al. (2013), and Tohver et al. (2014). The VIC model 
implementation over the western U.S. is described by Salathé et al. (2013). For given input data 
including temperature, precipitation, wind, vapor pressure, net incoming longwave and 
shortwave radiation, and air pressure, the VIC hydrological model simulates water balance 
variables such as snowpack, soil moisture, evapotranspiration, runoff, baseflow and soil moisture 
in three soil layers comprising the first several meters of soil. Simulations at each VIC grid cell 
cover an extended historical time period (water-years (i.e. October 1 to September 30) 1916 – 
2012 for the PNW and 1916 – 2010 for California). We used these water balance variables to 
develop empirical regression models of wetland response as described below and to hindcast 
historical variability of water levels in wetlands over 97 (PNW) and 95 years (CA) (Fig. 2.3.3).  
 
Regression models of wetland water levels  
As a first step, we used the correlation coefficient (Pearson’s R) to identify the strongest 
relationships between observed wetland water level at each site and a suite of water balance 
variables including precipitation, evaporation, runoff, snow-water equivalent, and simulated soil 
moisture in the three different layers. Secondly, we constructed empirical models of wetland 
response by fitting regression equations to observed wetland volumes or depths using the best- 
correlated water balance variable. Because montane wetlands are relatively undisturbed by 
human changes in land use, when making future projections, we assumed that the fitted 
regression relationships between wetland response and the soil moisture of the best-correlated 
water balance variable will not change with time. We developed a regression model using only 
observed data during drawdown periods because we did not have enough observed data during 
the rapid refill seasons to develop robust regression models for these. Also, for this system, the 
ecological consequences of altered timing of wetland drawdown and drying are greater than 
shifting timing of wetland refill, so we focused on the drawdown cycle for this reason as well.   

For most Mount Rainier, Olympic, and North Cascades sites, we had only a single year of 
data from which to fit the regression models. However, when multiple-years of observations 
were available (e.g. for some sites in Mount Rainier and Olympic National Park and for all sites 
in Oregon and California), we investigated the uncertainty in the projections when fitting to a 
single year of data. For Oregon and California sites that showed similar gradual drawdown 
patterns for observed years, we fitted a separate regression model for each individual year of 
multiple-years of observations, developed simulations for all years using each of these models, 
and then calculated the squared correlation coefficient (R2) using all observations and the 
corresponding simulations for each model. We then used the single-year regression model 
showing the highest squared correlation coefficient (R2) for all the available data to simulate 
historical wetland response and the associated climate-change response. We used the regression 
models fitted to other years to estimate the uncertainty in the simulations due to uncertainty in 
the regression parameters for individual years. For the Willamette National Forest site, for 
example, the squared correlation coefficient (R2) for the three regression models was 0.49, 0.88 
and 0.75 for 2003, 2005 and 2006 data, respectively. Therefore, we used the regression model 



fitted on the 2005 
observed data to simulate 
the historical response 
and used the regression 
models for years 2003 
and 2006 to estimate the 
uncertainty of the 
simulation due to 
uncertainty in the 
regression fit.  
 The Mount 
Rainier and Olympic 
National Park sites with 
two years of observed 
data presented somewhat 
different drawdown 
patterns between years in 
response to different 
weather conditions. For 
example, one site in ONP 
showed gradual 
drawdown for year 2012 
but intermittent 
drawdown and frequent 
partial refill events for 
2000. Thus, we 
developed a regression 
model using the earlier 
year’s data (e.g. 2000 
data for Olympic 
National Park and 1992 
for Mount Rainier), 
which had a greater 
number of observations 
and showed more 
dynamic changes in water 
levels. We then used the 
2012 data from both regions to validate the regression models in the context of potentially 
different patterns of drawdown and refill across years. 
 
Climate change scenarios 
To simulate potential future changes in water dynamics of individual montane wetlands in the 
PNW, we used simulated climate from the ECHAM5 general circulation model (GCM) forced 
by the A1B emissions scenario, which approximates the average conditions simulated for the 
region by ten different GCMs forced by the same emissions scenario. Climate projections were 
downscaled with the Hybrid Delta (HD) method described in detail in Appendix A of Tohver et 

Figure 2.3.3. Schematic diagram of the method of projecting and 
hindcasting wetland hydrology using the VIC hydrologic model 
calibrated with empirical data and driven by historical or 
simulated future climate impacts.	  
	  



al. (2014). Briefly, the HD method uses quantile mapping techniques to produce the transformed 
monthly observed climate data (years 1916-2006; a 91-year time series) in response to 30 years 
of monthly GCM projections for two future time periods: the 2040s (2030 – 2059) and the 2080s 
(2070 – 2099), producing 91 years of future inputs for the VIC model. The future monthly values 
are then used to rescale the daily values from the observed month to produce a future daily time 
series. As a result, the HD approach provides 91 years of observed variability ("1916-2006") for 
each future time period, and is directly comparable to the historical record on an event basis from 
1916-2006. Note that for historical runs we extended the VIC runs from 1916-2006 to 1916–
2012 in order to use field data obtained in 2012. However, for climate scenarios we used existing 
data developed by Hamlet et al. (2013) that have 91 years of observed variability, projected for 
future time periods. For landscape scale projections of the probability of drying for intermediate 
wetlands in Washington, we used an ensemble of ten climate change projections from 10 
different global climate models based A1B scenarios (Hamlet et al., 2013). We report the 
average of these results.    

For California, we used the ECHAM5 A1B scenario based on the Distributed Delta (DD) 
downscaling approach that is described by Littell et al. (2011) and Salathé et al. (2013). 
Although, ideally, we would have used data downscaled with the same approach for the 
California sites as we did for the Oregon and Washington sites, these data were the ones readily 
available from previous studies. Similar to the HD approach, the DD scenarios construct a 95-
year time series for two future time periods, which have the same number of years as the 
observations used in the downscaling. Although there are some differences in details between 
this downscaling method and the HD approach described above (e.g. length of record, method by 
which the changes in climate are applied to the historical time series), for our use here these 
differences are not particularly important. Both methods incorporate the spatial distribution of 
temperature and precipitation changes from GCMs, and changes in the central tendency of 
projected temperature and precipitation in each region are similar in each case.   
 
Historical reconstruction, future projections, and frequency analysis of wetland dynamics 
We estimated the average minimum wetland water level for both the historical runs and two 
future scenarios with time series behavior derived from the historical period. The average 
minimum wetland water levels were used to classify wetland types and evaluate the impacts of 
climate change on minimum wetland water levels. 

To project changes in the distribution and behavior of wetlands at landscape scales, we 
investigated a threshold for wetland drying (when ponds reach 0% of maximum water level) that 
can be applied generally across different locations and soil types. To do so, we evaluated the 
relationship between wetland drying and “field capacity.” Field capacity is the volumetric soil 
water content of soil that is partly saturated, but drains very slowly by gravity. This metric relates 
directly to our best predictors (soil moistures, as discussed below). We converted absolute soil 
moisture values generated by the VIC model to the field capacities that vary with soil type. We 
then compared simulated soil moisture with wetland water levels for ephemeral and intermediate 
wetlands at Mount Rainier and Olympic National Parks to find a threshold below which wetlands 
tend to dry out. Finally, we used the mean threshold of drying across regions and soil types as a 
proxy for intermediate wetland drying for each VIC grid cell in the landscape scale analysis.  
To calculate the probability of drying in each cell we counted the number of water-years for 
which the magnitude of soil moisture in the bottom soil layer was less than the drying threshold, 
and then divided by the total number of water-years. Thus the probability of wetland drying 



ranges from 0 to 1, with a higher value indicating more frequent wetland drying. We calculated 
the probability of wetland drying for the historical run and for all ten Hybrid Delta A1B 
scenarios for the 2080s, averaging the latter results for presentation in the plots. We then 
estimated the change in the probability of wetland drying by subtracting the probability of 
wetland drying for the historical run from that for the average value for the 2080s, with a positive 
value indicating an increase in the probability of drying for the 2080s.  
 
Water temperature modeling 
We collected water temperature data for 18 montane wetlands using iButtons during the 
summers of 2012-2013. We developed regression models based on the relationship between 
observed 2012 water temperature and simulated air temperature. (Simulated air temperature is 
not available for 2013.) We then used these regression models to project changes in water 
temperature under climate change scenario A1B.  
 
Puget Lowlands Wetlands 
We applied the same methods as for montane wetlands to develop an empirical regression model 
for each wetland in the Puget lowlands. Briefly, we selected the best predictor among the 
ecologically relevant water balance variables (such as precipitation, runoff, baseflow, snow-
water equivalent, evapotranspiration, and simulated soil moisture in the three different layers) 
simulated by the Variable Infiltration Capacity (VIC) macroscale hydrologic model, 
implemented at 1/16th degree resolution (Elsner et al., 2010, Hamlet et al., 2013). We then 
developed a site-specific regression model using observed wetland water depth and the best 
predictor. We used the empirical regression model for each site to hindcast historical wetland 
water depth (water years 1916-2012) and project the impacts of climate change on wetland 
hydrology using ECHAM5 global climate model scenarios for the 2040s and 2080s (A1B 
emissions scenario) (Hamlet et al., 2013).  We averaged annual minimum water depth for both 
the historical period and for climate change. The average minimum wetland water depth for the 
historical run was used to classify wetland types following the same classification scheme 
developed for montane wetlands above. We then compared the average minimum water level 
under climate change with simulated historical water levels to assess the impacts of climate 
change on minimum wetland water levels. The dataset contributed by Michele Bodkhe and 
Victoria Jackson of Northwest Ecological Services is described in Table 2.3.3. 
 
Table 2.3.3. Summary of observed wetland data obtained from monitoring of focal sites for 
Puget Lowlands wetlands. 

 
 
 
 
 
 
 
 
 

 
 

Location Type  Period Wetland 
Types 

Number of 
Wetlands Data Source 

Puget 
Lowlands Depth Dec. 2005   

 -  Nov. 2006 

Ephemeral 3 Field data, M. 
Bodkhe and V. 

Jackson 
(Northwest 
Ecological 
Services) 

Intermediate 3 

Perennial 1 



Columbia Plateau Wetlands 
The remote sensing technique described above was applied to reconstruct the historical surface 
area of wetlands in the Columbia Plateau from 1984-2011. This yielded high-quality datasets of 
historical observations for 772 wetlands: 410 in Douglas County, 279 in Swanson Lakes, and 83 
in Turnbull Lakes (Table 2.3.4).  
 
Table 2.3.4. Summary of observed wetland data obtained from remote-sensing for Columbia 
Plateau wetlands. 

Location Type  Period Number of 
Wetlands Data Source 

Douglas County 
Surface 

Area 
Years 1984- 

2011 

410 Remote-
Sensing 

Measurement, 
M. Halabisky 

Swanson Lakes 279 

Turnbull Lakes 83 

 
 Because multiple years of observations covering both the refill and drawdown seasons 
were available from the remotely sensed dataset, we applied a similar but modified approach to 
the one used for montane wetlands. First, we divided all 27 years of wetland hydrologic data into 
calibration (1996-2011) and validation (1984-1995) periods. The calibration and validation 
periods were chosen in chronological order to include a range of climate variability with which 
to test the performance of regression models in reproducing historical patterns. Next, we 
developed multivariate regression models to cover both the refill and drawdown seasons. To 
develop the multivariate regression models, we selected from among all water related variables 
the two variables that were best correlated with remotely sensed observations. (Note that this 
differs from the single regression model with one predictor used above to reconstruct historical 
patterns during only the drawdown season.)  Finally, we calculated Nash Sutcliffe efficiency 
(NSE) as well as the Pearson’s R value as measures of goodness of fit.   
 Unlike our montane sites, we have limited on-the-ground data with which to 
hydrologically classify Columbia Plateau wetlands a priori based on mechanistic drivers of 
hydrologic patterns. Also unlike the montane sites, the Columbia Plateau is a region of complex 
and potentially strong human influences on hydrology. Therefore, for both reasons, our approach 
requires an additional step of data exploration and hypothesis development, and our 
classifications should be understood as hypotheses to be further explored and tested (stemming 
from observed model relationships), rather than mechanistically-based classifications in which 
we can be strongly confident.  

Based on model fit to the observed data, we classified the wetlands into four groups. 
When the multivariate regression models reasonably reproduced observed daily historical 
patterns (Group 1 in Figure 2.3.4), we used these models to hindcast historical wetland behavior 
in response to observed climate variability for the historical period (1916 to 2012) and to project 
changes in wetland hydrology corresponding to projected changes in climate. We estimated the 
impacts of climate change on wetland hydrology by comparing annual minimum water levels 
simulated for the historical period and for climate change. For wetlands that did not fit with 
multivariate regression models, we tested whether wetland hydrology alternatively corresponded 
well with cool season (October to March) precipitation by developing regression models using 
cool season precipitation and annual mininum water level observations. For the group where the 



regression with cool precipitation data was a good fit (Group 2 in Figure 2.3.4), we explored 
whether these wetlands were more strongly fed by groundwater, as a potential mechanism to 
explain the different hydrologic behavior of these sites. We did so by comparing the locations of 
Group2 wetlands with available on-the-ground hydrologic data. For Group2 wetlands, we also 
used the regression model with cool season precipitation to produce annual minimum wetland 
surface area for the historical runs and for climate change.  

 

 
Figure 2.3.4. Schematic diagram of classifying four groups of wetlands in Columbia Plateau.  

 
For wetlands that did not fit well with either multivariate regression models using the two 

best overall predictors nor regression models using cool season precipitation, we investigated 
whether hydrologic patterns might indicate anthropogenic disruption. For example, we 

  Does the regression model capture well 
observed daily historical patterns? 

Develop a regression model using 
two best predictors and daily 

observations 

Yes Group 1 
Wetlands that fit well with daily 

basis regression model 

No 

  Does the regression model capture well 
observed annual minimum? 

Develop a regression model using 
cool season precipitation and annual 

minimum wetland surface 
observations 

Yes Group 2 
Wetlands that fit well with 

annual basis regression model 

No 

  
Do observed historical patterns show 

potential human impacts on wetlands? 
Yes Group 3 

Wetlands that might have 
human impacts 

No 

Group 4 
Wetlands that do not fit with 

regression models and need further 
investigation 



investigated whether hydrographs showed substantial changes in pattern over time, such as 
switches or step changes among unusually high or low values relative to other periods. In 
comparison with montane sites, the Columbia Plateau has many complex human influences on 
the movement of water across and through landscapes, so we would expect these effects to be 
evident in some hydrographs. If wetlands showed sudden unexpected changes that suggested 
some form of active disturbance, we classfied those as likely human impacted wetlands (Group 3 
in Figure 2.3.4). Group 4 are the wetlands that we could not confidently classify into any of 
above groups, and which need further investigation.   
 
2.4 Ecological Modeling 
Montane Wetlands 
Analysis of Pond-breeding Amphibian Habitat Use  
We used amphibian visual encounter survey data from 2012 to relate amphibian presence and 
habitat use (breeding or adult/foraging) to our four hydrologic wetland classes and other habitat 
attributes. We focus on the three common focal species for which we have sufficient data for a 
meaningful analysis: Rana cascadae, Ambystoma macrodactylum, and Ambystoma gracile. 
Because we anticipate that some species use different habitats for breeding versus foraging, we 
analyzed our dataset in two ways, first looking at the presence of life stages that indicate 
breeding (eggs, larvae, and tadpoles), and second at the presence of adult stages of each species.  

Using survey data, we constructed binomial logistic regression models to predict binary 
presence or absence of a) breeding evidence or b) adult life stages (terrestrial or aquatic) for the 
three focal species from the 2012 dataset. Included in the analysis were individual ponds (n = 
219) that we visited from 1 to 5 times each over the course of the breeding season. If we detected 
breeding efforts (egg masses or larval life stages) during any of those visits, this was coded as 
positive evidence of breeding. Our explanatory variables represent a suite of hydrologic and 
habitat variables: pond elevation (m), maximum pond size (circumference in m2), maximum 
pond depth (m), pond hydroperiod (ordered factor, 4 levels: ephemeral, intermediate, perennial, 
permanent), presence of fish in the pond (binary factor), maximum percent of the pond that was 
shallows (<0.5m) during the breeding season, maximum percent of the pond occupied by 
emergent vegetation throughout the breeding season, presence of complex adjacent habitat that 
may be used by amphibians (binary factor), percent of the pond perimeter occupied by woods, 
substrate class (factor, 4 levels: muck, mud/clay/silt, sand/gravel, cobble/boulder), presence of 
cobbles in the substrate (binary factor), and presence of dead wood in the pond (binary factor). 
We examined all combinations of explanatory variables to test for co-variation and used 
principal component analysis (PCA) where necessary to transform strongly correlated variables 
into uncorrelated variables (PCA axes) for analysis. Due to the variety of survey efforts and 
types across the ponds, some ponds had to be dropped from the analysis due to data paucity, 
producing a smaller subset of ponds on which the analysis was performed (n = 169). 

In order to avoid over-fitting, we limited the number of parameters included in models to 
5 (including intercept; Burnham, Anderson 2002). We used Akaike’s Information Criterion 
(Akaike 1974) to compare the degree of support for all combinations of 5-parameter models. 
This approach is generally used to explore data in the absence of any a priori hypothesis being 
considered more or less probable (Anderson, Burnham 2002). While we strongly suspected that 
hydroperiod and the presence of fish would be important drivers of amphibian adult presence and 
breeding, we used this approach to explore the data given the uncertain effects of most other 
variables (Symonds, Moussalli 2011). The results of this method can then be used to inform 



more traditional hypothesis tests, which we are conducting now and are a more appropriate way 
to check for interactions among parameters. These will be reported in future publications. 

We performed analyses using R (v 3.0.2; R Core Team 2013), with the AIC analysis 
package AICcmodavg (Mazerolle 2013). We calculated Akaike weights (wAk) for each model 
(weight of support between 0 and 1, all wAk sum to 1), which can be interpreted as the probability 
that a given model is the best approximation (Symonds, Moussalli 2011). To estimate a 95% 
confidence set of models (a subset of candidate models that we are 95% sure contains the best 
model in the original set), we selected the top models whose cumulative wAk just surpassed 0.95 
(Burnham, Anderson 2002). To compare the relative importance of individual variables, wAk for 
all models containing each variable were summed, resulting in a relative ranking of variable 
importance. The wAk was also used to calculate the weighted mean of variable coefficients across 
all models in which each variable was included. For visual ease of interpretation, we scaled and 
centered all variables (mean of 1, standard deviation of 1) so that their coefficient estimates are 
directly comparable and relative to their importance.  

We are currently exploring these data with a number of additional approaches not 
reported here. Occupancy analyses are a common approach to amphibian habitat association 
studies, because they make it possible to estimate detection rates as well as species occupancy, 
thereby accounting for false absences in the data. Our dataset presents several challenges for 
occupancy analyses given the particular focus of our study. Most significantly, we are most 
interested in the relationship between hydrologic dynamics, species habitat use, and breeding 
success. However, due to the mechanics of occupancy modeling, sites that dry must be dropped 
from the analysis once dry. 2012 was a climate change analog year, hence many of our sites 
dried, which presents a number of methodological and interpretive challenges for the analysis. 
Therefore, for the initial hydrologic assessments that are the focus of this study (i.e. to identify 
core relationships between species habitat use and pond hydrologic types), we use the methods 
described above, but moving forward are further exploring the use of occupancy analysis to 
estimate variation in detection in relation to a range of habitat attributes that are shared among 
different hydrologic classes. We discuss additional analyses under “Next Steps” below. 
 
2.5 Synthesis 
Montane Wetlands 
Synthesis of Climate-Hydrologic Models with Ecological Analyses 
We evaluated the vulnerability to future climate impacts of our three focal species of pond-
breeding amphibians (Rana cascadae, Ambystoma macrodactylum, Ambystoma gracile). 
Because these three species represent different life history and developmental requirements in 
the Cascade and Olympic mountains, we hypothesized that this variation would be associated 
with differential use of wetland habitats and therefore different levels of risk of climate-
associated habitat loss.  

Vulnerability to climate impacts combines sensitivity, exposure, and adaptive capacity 
(Glick et al. 2011). Sensitivity is a measure of whether or how a species or ecosystem is likely to 
be affected by climate change based on its biology and physiology (if a species) or other factors 
such as geographic location and associated processes (if an ecosystem). Exposure is the intensity 
of climate change impacts a species or ecosystem is likely to experience given where it lives or is 
located. Adaptive capacity is the range of ways a species or system might be buffered from 
climate impacts to reduce its sensitivity or exposure and enable it to cope without significant 
changes in viability or ecological function. Adaptive capacity includes biological responses such 



as migration, behavioral changes, or evolutionary adaptation. Also, in a management sense, 
adaptive capacity refers to opportunities to actively ameliorate impacts through conservation 
actions (Glick et al 2011).  

We assessed sensitivity to climate change based on the strength of association of each 
focal species with the four wetland hydrologic classes, as determined by the ecological analyses 
above, and in relation to the relative vulnerability of each class of wetland to climate change, as 
determined by the climate-hydrologic models of future impacts.  

To assess exposure, we overlaid the VIC hydrologic output maps showing changes in 
wetland drying rates by the 2080s with National Wetland Inventory hydrologic water regime 
modifier cross-walked to our wetland hydrologic classification. For example, we classified all 
wetlands with the NWI hydrologic modifier defined as “seasonally flooded” as intermediate 
wetlands. Seasonally flooded wetlands are defined as having “surface water present for extended 
periods especially early in the growing season, but absent by the end of the growing season in 
most years”. See Appendix C for a detailed explanation of the NWI hydrologic modifiers and 
how they relate to our pond classifications. While the NWI is imperfect, this approach enables us 
to 1) relate the proportion of available habitats of different types within each VIC grid cell to 
projected changes in the level of climate-induced hydrologic risk, and 2) estimate changes in the 
distribution of wetland types within each VIC geographic cell by extrapolating from our focal 
site assessment of the proportion of ponds that will switch categories under future climates. We 
are in the process of conducting a separate analysis of Mount Rainier National Park where 
improved wetland mapping resources are available, not reported here.  

Finally, to assess adaptive capacity, we assess management-related adaptive capacity by 
identifying regions where introduced fish are present and could potentially be removed as a 
means of restoring what appears to be more climate-resistant wetland habitat for amphibians 
(Ryan et al. 2014). Relatively little is known regarding biological responses of our three primary 
species to climate change. What information is available we discuss below. 
 
 
3. Project Results  
 
3.1 Remote-Sensing of Wetlands 
Montane Wetlands 
Our method using object based image analysis of high resolution imagery and LiDAR mapped 
substantially more wetlands than the National Wetland Inventory (NWI) and produced a finer, 
more accurate wetland delineation (Figure 3.1.1). When compared to the 31 groundtruthed 
wetland monitoring sites in Mount Rainier National Park, our classification using LiDAR data 
and high resolution imagery had an accuracy of 90.3% (Table 3.1.1). Two of the three sites that 
were not mapped as wetland ponds were mapped as streams. The site that was missed was too 
small and ephemeral to be detected through visual assessment of all data inputs. The NWI 
mapped only 61.3% of the sites. Additionally, the NWI dataset had offset errors, where the 
delineations were slightly offset from the actual wetland locations (Figure 3.1.1). Additionally, 
through hydrologic flow modeling we were able to map small stream locations as well as 
wetland vegetation. Figure 3.1.1 shows a comparison of our classification using LiDAR and the 
NWI.  

Object based image analysis using digital elevation models with a 10 meter pixel 
resolution did not produce useful results. This classification mapped only 58.1% of the wetland  



 
Figure 3.1.1: Example of classification output for Spray Park, Mt. Rainier National Park 
compared to the National Wetland Inventory.  
 
Table 3.1.1: Comparison of wetland inventories to 31 groundtruthed wetland monitoring sites. 
  
 Spray Park Palisades Mazama 

Ridge 
Total Accuracy 

NWI 6 7 6 19 61.3% 
OBIA using DEM 5 7 6 18 58.1% 
OBIA using 
LiDAR 

12 8 8 28 90.3% 

Monitoring Sites 15 8 8 31  
 
monitoring sites, worse than the National Wetland Inventory. The DEM classification was 
unsuccessful because although the DEM had a resolution of 10 meters it was derived from 30 
meter satellite data and could not pick up small elevational changes. Measurements of slope, 
therefore, were not useful in predicting wetlands. In addition, without the use of LiDAR intensity 
imagery, shadows from trees and topography could not be removed. We tested our algorithm on 
our other montane sites, Olympic National Park and North Cascades National Park, with similar 
results. Any attempts at adapting the DEM algorithm to better map wetlands in these two parks 
caused either high errors of commission (mapping shadows as wetlands) or errors of omission 
(failing to map wetlands). Therefore, we determined that we could not map wetlands in  
mountainous areas without additional data; either LiDAR, radar, or additional dates of high 
resolution imagery. (For this reason we use the NWI in the Synthesis results below.) 



Figure 3.1.2: Example of high resolution aerial imagery compared to LiDAR intensity for 
Mazama Ridge, Mount Rainier National Park. Wetlands are circled in red. LiDAR intensity 
imagery helps remove the confusion between shadows and water.  
 
Of these datasets LiDAR data is the most ideal for mapping wetland in mountainous areas as it is 
an active sensor with a high spatial resolution. Because LiDAR is an active sensor, and therefore 
does not passively measure reflected sunlight, it does not capture shadows caused  
by sunlight hitting trees and areas of steep topography. Infrared light, which was used for this 
LiDAR acquisition is highly absorbed by water and is useful in detecting waterbodies, such as 
ponded wetlands. Figure 3.1.2 shows the advantages of LiDAR intensity compared to high 
resolution aerial imagery in removing shadows and locating areas of water. However, 
theoretically multiple dates of imagery could also ameliorate the issue of shadows on the 
landscape as they tend to have a distinct spatiotemporal pattern different from wetlands. Because 
we were limited to only two dates of aerial imagery we could not test this idea. 
 
Predicting Pond Drying Rate 
Our approach using remotely sensed variables to predict slope of pond drawdown did not 
produce conclusive results. There was no single remotely sensed variable that could be used to 
predict pond rate of drying. This may be due to the low sample size (31) and/or the high 
variability of wetland types and hydrologic drivers of wetland hydrology. Although the variables 
had low R2 values, the remote sensing variables calculated on both hierarchical levels, wetland 
complexes and ponds, showed significance to pond drying (Table 3.1.2).  The relative area of 
deep water mapped using 2008 LiDAR intensity imagery to the total area of the wetland 
complex was the best predictor with a R2 value of 0.39. The next best predictors were the relative 
area of deep water mapped using 2009 false color imagery and the maximum topographic 
wetness index calculated within a wetland complex. Other significant variables were TWI 
calculated within just the ponded area of a wetland, the relative area of a pond which is deep 
enough to fully absorb LiDAR, the mean TWI for a wetland complex, the minimum slope 
calculated within a pond, the mean topographic wetness index of a pond, and the relative area of 
deep water calculated using 2008 LiDAR intensity imagery.  
 



Table 3.1.2 Remotely sensed variables predicting the slope of pond drawdown 
 

Variable Calculated on: R2 P - value 
Relative area deep water area in 2008 wetland complex 0.39 0.0002 
Relative area of deep water in 2009  pond 0.38 0.0002 
Maximum topographic wetness index (TWI) value wetland complex 0.38 0.0003 
Maximum topographic wetness index (TWI) value pond 0.33 0.0008 
Relative area deep water area in 2009 wetland complex 0.29 0.0018 
Relative area LiDAR is fully absorbed pond 0.26 0.0034 
Mean topographic wetness index (TWI) value wetland complex 0.26 0.0036 
Minimum slope value pond 0.22 0.0073 
Mean topographic wetness index (TWI) value pond 0.22 0.0085 
Relative area deep water area in 2008 wetland complex 0.19 0.0136 
 
Columbia Plateau Wetlands 
Our method combining high resolution imagery with Landsat satellite imagery to reconstruct 
wetland hydrographs in the Columbia Plateau produced detailed hydrographs for 2,475 wetlands 
spanning a time period from 1984 – 2011. The individual hydrographs capture both long-term 
change and seasonal change to surface water of wetlands (Figure 3.1.3).  
 Comparisons of the SMA surface water estimates to the validation dataset show a 
Pearson’s R value of 0.987 (p< 0.001) (Figure 3.1.4, left panel). Percent surface water estimates, 
as expected, had a lower correlation, with a Pearson’s R value 0.845 (p< 0.001) (Figure 3.1.4, 
right panel). Although, still low, further examination of the residuals compared to the size of the 
wetlands shows a larger magnitude of error for smaller wetlands (Figure 3.1.5). However, even 
hydrographs for wetlands less than one Landsat pixel provide insight into long-term wetland 
hydrology (Figure 3.1.6). 
 
 

Figure 3.1.3: Example of a surface water hydrograph spanning from 1984 - 2011. This figure 
represents the hydrograph of the wetland on the left, which is 3.4 hectares in size. X-axis tick 
marks represent number of observations.  Reconstructed hydrograph measures both inter- and 
intra- annual change. A moving average of annual precipitation calculated by month is shown in 
grey. The hydrograph of this wetland tracks changes in precipitation levels.  
 



This dataset 
provides rich 
hydrological data 
spanning 26 years that 
can be mined to classify 
wetland habitat types, 
identify abnormal 
changes to wetland 
hydrology, monitor 
surface water 
availability throughout 
the landscape and serve 
as a source for wetland 
hydrologic research at 
different temporal 
scales. Figure 3.1.7 
provides an example of 
mining the hydrological 
data for wetland classification purposes. Although there are various ways to classify wetlands 
from the hydrological dataset, we chose to classify wetlands at two temporal scales. First, we 
used the entire dataset to categorize wetlands  
based on the % years that a wetland dried. Secondly, we extracted the hydrographs for a typical 
climate year (2011) and classified wetlands based on their drying rate and drying day. The 
hydrographs taken from 2011 mimic the classes we used for montane sites. The benefit of using 
the entire timespan to classify wetlands is that we capture more of the inter-annual variability of 

Figure 3.1.5: Residuals of relationship between percent actual 
surface area to percent predicted surface area. Surface water extent 
as measured by the validation dataset is plotted on the x-axis.   
	  

	  
Figure 3.1.6: Example of a hydrograph for a small wetland. The surface area of the validation dataset 
(derived from 2011 aerial image) estimated the surface area to be only 800 square meters in size (less 
than one Landsat pixel), however, this hydrograph still tracks precipitation patterns and provides useful 
information of the hydrology of this wetland. A moving average of annual precipitation calculated by 
month is shown in grey. 
	  



each wetland. The benefit of classifying wetlands using a recent typical climate year is that some 
wetlands may have changed classes over the 26-year timespan (e.g. permanently flooded to 
intermediate) due to human-induced change. Because we ran the VIC analysis on all wetlands 
we did not need to classify wetlands a priori  as we did for the montane sites. This allowed us to 
explore the spatiotemporal patterns with a continuous variable rather than discrete categories, 
since hydrologic drivers and related ecological thresholds may differ between the Columbia 
Plateau and montane wetlands.   
 

  
Figure 3.1.7: Example of a hydrograph for three different wetland types for the year 2011; 
ephemeral wetland (a), intermediate wetland (b), and a permanent wetland (c). The map shows 
the spatial variability of wetland types in northeast Douglas County based on the number of 
years the wetland fell below 20% water surface area between 1984 and 2011.  
 
 We also found evidence of wetlands undergoing abnormal change. For example, Figure 
3.1.8 shows three examples of wetlands with abnormal hydrographs: (top) provides the 
hydrograph for a wetland that is drying out over time and is now is only 50% of the total surface 
area it was in the mid-1980s. Figure 3.1.8  (middle) shows a hydrograph of a wetland that is 
repeatedly plowed over for farming. Figure 3.1.8 (bottom) shows a hydrograph of a wetland that 
was created through hydrologic engineering.  

a c b 

a.) 

b.) 

c.) 



The results derived from the remote sensing methods described here are integrated with 
the climate change projections into a geodatabase which includes hyperlinks to reconstructed 
hydrographs as well as predicted wetland hydrographs. This interactive map allows researchers, 
policymakers, and managers to see patterns of change at different spatial and temporal scales, 
both across the entire Columbia Plateau landscape and at the local scale (Figure 3.1.9). Our 
geodatabase will be provided to land managers in each of the focal regions in the Columbia 
Plateau and is available upon request. 

 

 
Figure 3.1.8: Example of hydrographs for three wetlands undergoing abnormal change; 
shrinking wetland (top), plowed wetland (middle), and created wetland (bottom).  
 

1985 2011 

2006 

2005 2011 

2011 



 
Figure 3.1.9: Example of interactive wetland map created for the Columbia Plateau using a 
geodatabase created for this project. This map provides users with an interactive approach to 
detecting changes to wetlands at multiple temporal and spatial scales. The top image is an 
example of changes in wetland hydrology between 1984 – 2011 at the landscape scale. The 
bottom image shows historic and future hydrographs for an individual wetland. 



3.2. Monitoring of Focal Field Sites 
Montane Wetlands 
Hydrologic monitoring results are integrated into Section 3.3 below. Amphibian survey results 
are integrated into Section 3.4 below. Appendix B lists all monitored and surveyed sites. 
 
Puget Lowlands Wetlands 
Results are integrated into Section 3.3 below. 
 
Columbia Plateau Wetlands 
IButton dataloggers were placed in Fall 2012 and Spring 2013, and all were retrieved in Fall 
2013. Unfortunately, cloud-free satellite imagery was not available for the same time period, and 
iButtons in some cases sank into thick mud that obscured their signal, so we could not use the 
iButtons as a strong source of validation. 
 
 
3.3. Climate-Hydrologic Modeling 
 
Montane Wetlands 
Historical reconstruction of wetland dynamics 
The soil moistures in the middle and bottom soil layers were better correlated with observed 
wetland water levels than other water balance variables (Fig. 3.3.1). The best predictor differed 
among years and regions. Soil moisture in the middle soil layer was the best predictor for 
ephemeral, intermediate, and perennial wetlands based on observed data in 1992 for Mount  

 
Figure 3.3.1. Correlation coefficients between observed water level and simulated water balance 
variables such as precipitation (precip), evapotranspiration (evapot), runoff, soil moistures in the 
top (soilm1), middle (soilm2), and bottom (soilm3) layers, and snow water equivalent (swe). 



Rainier National Park and 2000 for Olympic National Park. However the strength of correlations 
differed substantially between the 1992 Mount Rainier and 2000 Olympics datasets, with fairly 
strong correlations between wetland water levels and middle layer soil moisture in Mount 
Rainier and far weaker correlations and poor overall model performance in the Olympic sites in 
2000. Overall, though, soil moisture in the bottom soil layer was the best predictor for all 
wetlands except the 1992 Mount Rainier and 2000 Olympics datasets, with fairly robust 
correlations between simulated and empirical data.  After choosing the best single predictor for 
each wetland, we developed a regression model for each individual wetland.  

The R2 values showed that the regression models match empirical observations 
reasonably well, with a mean R2 for all for wetland types above 0.8, though a few wetlands (6 out 
of 125; 4.8%) had an R2 value below 0.6. Overall, ephemeral and intermediate wetlands showed 
the best model fits, while perennial ponds had the weakest fit among wetland types (Fig. 3.3.2). 
The observed timing and pattern of seasonal drawdown generally were captured well by 
simulations for montane wetlands across the majority of our different sites (0.82 < R2 < 0.97) 
(Figs. 3.3.3-4). Figure 8 illustrates representative wetlands for each pond type from Mount 
Rainier (left column) and Olympic National Parks (right column), selected from sites with the 
most observed data. Exceptions to the overall good model performance were the minimum water 
level for the year 2006 for Deschutes National Forest, Oregon (Fig. 3.3.4a) and the timing of 
drawdown for the 
year 2003 in Trinity 
Alps Wilderness, 
California (Fig. 
3.3.4c). For the 
Deschutes National 
Forest, the observed 
minimum water level 
for year 2006 was 
13% of full capacity 
but the simulation 
minimum was 22-
34%. For the Trinity 
Alps Wilderness site, 
the wetland started 
drawdown about one 
month later in 2003 
compared to the other 
years but the 
simulation was not 
able to reproduce this 
timing.  

For sites where multiple years of data existed, we found considerable uncertainty and 
variation in model performance (Figs. 3.3.4-6). For example, different regression models for the 
Trinity Alps (CA) site, constructed using different years of data, showed an average difference of 
47 days between the earliest and latest prediction of minimum water levels in summer (Fig. 
3.3.4c). While the regression model for Mount Rainier National Park developed based on 1992 
data (0.83 < R2 < 0.99) also captured the observed drawdown at the same wetlands in 2012 (0.88 

	  
Figure 3.3.2. Boxplot of goodness of fit (R2) between observed and 
simulated data for each wetland type. 
	  



< R2 < 0.995) (Fig. 3.3.5), model performance across different years was poor for Olympic 
National Park. For Olympic National Park, the regression model based on 2000 observations 
missed the timing of drawdown and/or minimum water levels observed in 2012 (Fig. 3.3.6). We 
therefore might expect comparable levels of uncertainty in the performance of the single-year 
regression fits for the broader suite of wetlands at Mount Rainier, Olympic and North Cascades 
National Parks. 

Investigating 
the threshold for 
wetland drying we 
found that, on 
average across 
regions, wetland 
drying occurred 
when soil moisture 
was at roughly 
100% field capacity, 
though there was 
considerable 
variation among 
sites (Fig. 3.3.7). 
Therefore to have a 
single metric for 
landscape-scale 
analysis, we use 
100% field capacity 
as a mean threshold 
of drying and proxy 
for intermediate 
wetland drying for 
each VIC grid cell. 
These values help 
quantify systematic 
changes in wetland 
response over large 
areas, but may not 
represent the details 
of individual 
wetland responses 
very well. 
 
 
 
 
 
 

	  
Figure 3.3.3. Four representative wetlands in Mt. Rainier National Park, 
WA (a-d) and in Olympic National Park, WA (e-h) for ephemeral 
hydroperiod (a,e), intermediate hydroperiod(b,f), perennial (c,g) and 
permanent wetland (d,h). Solid circles show observed data that are used 
for developing regression model and calculating R2 values and open 
circles are remaining observed data. Blue lines are simulated wetland 
levels. 
	  



Figure 3.3.4. Observed wetland water levels compared with simulation using the regression 
models for a) Deschutes National Forest, OR, b) Willamette National Forest, OR, and c) Trinity 
Alps Wilderness, CA. Dark blue lines are produced by the regression equation deriving from the 
best fit from all available years. Blue bands show the range of uncertainty associated with 
alternate regression parameters deriving from other years of data. 



 
Figure 3.3.5. Observed wetland water level for year 1992 (a-c) and for year 2012 (d-f) for ponds 
at Mount Rainier National Park compared with the simulated wetland water levels using the 
regression model that were developed based on 1992 observation. Solid circles show observed 
data that are used for developing regression model and/or for calculating R2 values and open 
circles are the other observed data. RMSE is the root mean squared error, which allows 
comparison of model fit for the two datasets. 



 

 
Figure 3.3.6. Observed wetland water level for year 2000 (a-c) and for year 2012 (d-f) for 
Olympic National Park compared with the simulated wetland water levels using the regression 
models that were developed based on 2000 observation. Solid circles show observed data that are 
used for developing regression model and/or for calculating R2 values and open circles are the 
other observed data. RMSE is the root mean squared error. 



 

 
Figure 3.3.7. Relationship between percentage field capacity and wetland drying for 
intermediate wetlands across study regions. Spray Park and Palisades are in Mount Rainier 
National Park. (There were no intermediate wetlands by our definition in Mazama Ridge.) Deer 
Lake, Potholes, Clear Lake, and Upper Lena are regions of Olympic National Park. 
 
Future climate projections of wetland dynamics 
We found consistent projected effects of climate change on all classes of wetlands, including 
earlier drawdown, a more rapid recession rate in summer, and reduced minimum water levels 
(Figs. 3.3.8-9).  Overall, water levels in ephemeral or intermediate wetlands are most sensitive to 
climate change (Fig. 3.3.8a-b and e-f). In ephemeral or intermediate wetlands, the effects of 
earlier drawdown, more rapid summer recession rate, and reduced minimum water levels result 
in a longer dry season in summer (Fig. 3.3.8a-b and e-f, and Fig. 3.3.10c). Results for perennial 
and permanent wetlands also showed earlier drawdown and/or reduced water levels in future 
climates (Fig. 3.3.8c-d and g-h and Fig. 3.3.9a-b). Our projections also revealed variations in the 
magnitude of changes that were dependent on wetland type and location.   
 These climate-induced shifts in hydrologic behavior across all types of montane wetlands 
in our study support the hypothesis that climate change will force transitions among wetland 
types (Fig. 3.3.11). By the 2080s, 58% of intermediate wetlands are projected to become 



ephemeral wetlands (17/31 sites), whereas 22% of perennial wetlands are projected to become 
intermediate wetlands (7/32 sites) and 3% to become ephemeral wetlands (1/32 sites) (Fig. 
3.3.11b). Thirty-two percent of permanent wetlands are projected to become perennial (12/38 
sites) (Fig. 3.3.11b).  
 
Figure 3.3.8. 
Projected 
wetland 
response to 
climate 
change for 
sites in Mt. 
Rainier 
National Park, 
WA (a-d) and 
in Olympic 
National Park, 
WA (e-h) for 
ephemeral 
hydroperiod 
(a,e), 
intermediate 
hydroperiod 
(b,f), perennial 
(c,g) and 
permanent 
wetlands (d,h). 
Blue solid 
lines are 
wetland 
hydrographs 
for year 1998 
and pink and 
read dashed 
lines show 
wetland 
hydrographs 
of year 1998 
with climate 
change 
perturbation 
for the 2040s 
and 2080s, 
respectively. 
 



 
 
Figure 3.3.9. Projected wetland response to climate change for a) Deschutes National Forest, 
OR, b) Willamette National Forest, OR, and c) Trinity Alps Wilderness, CA. Blue solid lines are 
wetland hydrographs for years 2003-2004 and red dashed lines show wetland hydrographs of 
years 2003-2004 with climate change perturbation for the 2080s. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure 3.3.10. Map of the difference 
between historical probability of drying 
and that of the 2080s for intermediate 
wetlands in the mountains of Western 
Washington state. Projections for the 
2080s are the average value for all ten 
GCM A1B scenarios. Colored grid cells 
are above 250m elevation, the region in 
which our projections are most 
relevant. Topographic contour intervals 
are 750m.  



 
Figure 3.3.11. Scatterplots showing the slope of wetland drying versus the average of annual 
minimum a) for historical runs and b) for the 2080s. Reds are ephemeral hydroperiod wetlands, 
oranges are intermediate hydroperiod wetland, greens are perennial wetlands and blues are 
permanent wetlands.   



Considered at the landscape scale, the projected effects of climate change on future 
probabilities of drying of intermediate wetlands in mountainous areas of Washington vary 
geographically but increase overall in higher elevation regions (Fig.3.3.10). Lowland areas are 
typically below the soil moisture threshold every year, and the probability of drying (by this 
measure) does not change in these areas, thus our model is not appropriate for assessment of 
lower elevation regions (grey areas on the maps). Similarly, many mid-low elevation regions 
show little change or even a small shift towards becoming wetter (light green and purple regions 
on maps). At higher elevations, both along the crest of the Washington Cascades and in the 
Olympic Mountains, the probability of drying for intermediate wetlands changes substantially. 
Under the 20th century climate, many cells had a probability of drying of 0.5 or lower for 
intermediate wetlands. By the 2080s, the projected probability of drying is greater than 0.8 for all 
but a few model cells, The largest changes in probability of drying were simulated for cells that 
historically represented the wettest regions in the model domain.  
 
Water temperature modeling 
The regression models reasonably captured historical water temperature variation, especially for 
ephemeral and perennial ponds (R2 values generally >0.6) (Figures 3.3.12-14). While multiple 
sites dried, only one pond was classified as intermediate following our VIC analyses, hence the 
single data point in this category. All sites show an increase in average annual maximum 
temperature by the 2080s (roughly +2˚C average increase across sites) but with geographic 
variation in the amount of projected future change (Table 3.3.1, Figure 3.3.2). Our sample size is 
too small to robustly characterize spatial relationships in the data, though there are interesting  
 
 
 
Figure 3.3.12. Four 
representative 
wetlands for 
ephemeral 
hydroperiod (a), 
intermediate 
hydroperiod (b), 
perennial (c) and 
permanent wetlands 
(d). Solid circles 
show observed water 
temperatures (oC) 
that were used for 
developing the 
regression model and 
calculating R2 and 
NSE values. Blue 
lines are simulated 
wetland water 
temperature (oC). 
 



hints of possible 
patterns that 
generate 
hypotheses to 
explore further. 
For example, 
these preliminary 
data suggest that 
the intensity of 
impacts on water 
temperature may 
be related to 
elevation and 
aspect. For 
example, note 
variation in 
intensity in the 
three study 
regions in Mount 
Rainier National 
Park, or two focal 
regions in 
Olympic National 
Park (Figure 
3.3.15). Also, in 
our small sample 
of permanent 
wetlands, the mid-
elevation wetland 
(~1500m) was 
most sensitive to 
climate change in 
comparison with 
both higher and 
lower elevation 
permanent 
wetlands (Figure 
3.3.16b). We also 
found a hint of an 
elevational 
gradient in model 
fit (Figure 
3.3.16a).  
 
 	  

	  
Figure 3.3.13. Boxplot of goodness of fit (R2) between observed and 
simulated water temperature data for each wetland type. 

	  
Figure 3.3.14. Boxplot of simulated annual maximum water temperature 
for each pond type for a) historical run and b) the 2080s.	  
	  



Table 3.3.1 List of the 18 wetlands monitored with iButtons during summer of 2012 (August to 
October) used in the temperature analysis, and their simulated average annual maximum water 
temperature for the historical period and the 2080s. Under site locations, MRNP is Mount 
Rainier National Park, NCNP is North Cascades National Park, and OLYM is Olympic National 
Park.  

Site Location Type Name 
Averaged Annual Max Temp 

Historical 2080s 

Clear Lake, OLYM, WA Ephemeral SL20A 19.9 21.4 

Clear Lake, OLYM, WA Ephemeral SL23E 19.8 22.3 

Clear Lake, OLYM, WA Ephemeral SL23J 20.2 22.5 

Clear Lake, OLYM, WA Perennial SL23I 19.7 22.7 

Clear Lake, OLYM, WA Perennial SL23K 20.3 24.0 

Clear Lake, OLYM, WA Perennial SL26B 16.1 19.1 

Deer Lake, OLYM, WA Ephemeral Deer Camp5 16.0 17.4 

Deer Lake, OLYM, WA Perennial Deer Meadow9 12.7 13.8 

Palisades, MRNP, WA Ephemeral Pal3 15.7 16.5 

Palisades, MRNP, WA Intermediate Pal5 13.8 15.2 

Palisades, MRNP, WA Permanent Pal10 17.3 18.4 

Palisades, MRNP, WA Permanent Pal8 16.4 17.4 

Spray Park, MRNP, WA Ephemeral SprayE 21.6 24.4 

Spray Park, MRNP, WA Perennial SprayC 19.3 21.4 

Spray Park, MRNP, WA Perennial SprayP 16.8 18.3 

Mazama Ridge, MRNP, 
WA Permanent Far 3 18.7 22.8 

NCNP, WA Permanent Pyramid 18.4 20.0 

NCNP, WA Permanent Thunder 23.1 24.9 



	  
	  
 
Figure 3.3.15. Focal sites of water temperature monitoring and climate change simulations of 
water temperature in North Cascades, Olympic, and Mount Rainier National Parks. 
 
 



 

 
Figure 3.3.16. Goodness of fit values (a) for a set of permanent ponds across an elevational 
gradient. Panel (b) shows historical water temperature values in blue, and projected 2080s values 
in red.   
 
 
 
 
Puget Lowlands Wetlands 
Either soil moisture in middle or bottom layer was the best predictor for Puget lowlands wetlands 
(Table 3.3.2). The goodness of fit showed that regression models fairly successfully 
reconstructed the historical patterns observed during December 2005 and November 2006:  R2 > 
0.72 and NSE > 0.42 (Figure 3.3.12 and Table 3.3.2).  Based on the wetland classification 
developed for montane wetlands, there are three ephemeral, three intermediate and one perennial 
wetland represented by these wells. Unlike montane wetlands that show significant impacts of 
climate change on wetland hydrology such as reduced water levels, rapid drawdown, and a 
longer dry season, projections for these Puget lowlands sites show no significant impact of 
climate change (Table 3.3.3 and Figure 3.3.12).   
 



Table 3.3.2 Summary of simulated wetland depth for Puget Lowlands wetlands. 

Name Predictor 
Goodness of Fit Averege Min Water depth 

(% of full) Type 
R2 NSE Historical 2080s 

well1 soilm2 0.86 0.83 0.0 0.0 ephemeral 

well2 soilm2 0.77 0.69 11.0 7.6 intermediate 

well3 soilm2 0.90 0.89 0.1 0.1 ephemeral 

well4 soilm3 0.72 0.60 0.0 0.0 ephemeral 

well5 soilm3 0.87 0.85 20.9 21.4 intermediate 

well6 soilm3 0.89 0.87 52.4 52.7 perennial 

well7 soilm2 0.72 0.47 3.6 2.2 intermediate 
 
  
 



Figure 3.3.12. 
Observed water 
depths during Dec. 
2005-Nov. 2006 
for Puget 
Lowlands wetlands 
(solid circles) 
compared with the 
simulated wetland 
water depths using 
the regression 
model that were 
developed for 
historical (blue 
lines) and for the 
2080s (red lines).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Columbia Plateau Wetlands 
Historical reconstruction of wetland dynamics 
For the Columbia Plateau wetlands, the soil moistures in the top and bottom soil layers were 
better correlated with observed wetland surface area than other water balance variables (Fig. 
3.3.13). Using these two best predictors, we developed a multivariate regression model for the 
calibration period (1996-2011) (daily-based model). Since not all wetlands had a good fit with 
the daily-based multivariate regression model, we also developed a regression model using cool 
season precipitation and annual minimum water level observations (annually-based model) to 



test the fit between observed wetland data and this alternative model. As described above, we 
divided our wetlands into four groups based on model fits (or lack thereof), which may reflect 
relationships with different putative hydrologic drivers. Again, it is important to note that, due to 
the limited field data for Columbia Plateau wetlands and the complex and potentially strong 
human influences on hydrology, our classifications should be understood as initial hypotheses to 
be tested and further explored, rather than formal classifications based on defensible hydrologic 
mechanisms.  

Group 1 wetlands were those whose R and NSE values for both the calibration and 
validation periods were greater or equal to 0.5 and -2.0, respectively, and had a ratio of greater or 
equal to 0.8 between the range of simulations and that of observed data. Group 2 were wetlands 
that did not satisfy this criterion, but had R values for the regression models using cool 
precipitation and annual minimum water level observations of greater or equal to 0.7. If wetlands 
did not satisfy criteria for Groups 1 and 2 but showed anomalously high or low values for a 
certain period, we classified them in Group 3. All remaining wetlands were classifed as Group 4. 
Box plots showing the correlation coefficients for each group are shown in Figure 3.3.14. The 
thresholds were chosen based on the distribution of the data. 

Since Groups 1 and 2 are defined based on model fit, the two measures of goodness of fit 
(Nash Sutcliffe efficiency (NSE) and the Pearson’s correlation coefficient (R)) show that 
regression models match empirical observations reasonably well for those groups (Group 1: 
n=192; Group 2: n=50). For Group 1, there was not a significant difference in model fits between 
the daily multivariate soil moistures regression model and the annual cool season precipitation 
model. Group 2 did show a significantly better fit to the annual model (Figure 3.3.14). For a 
majority of sites 
(535/772), however, 
empirical 
observations did not 
match either the 
daily multivariate 
soil moistures 
regression model or 
the annual cool 
season precipitation 
model (Group 3, 
n=185; Group 4, 
n=350). While we 
can hypothesize that 
Group 3 reflects 
human influences 
on hydrology, we 
do not know the 
driving mechanisms 
differentiating the  

	  
Figure 3.3.13. Correlation coefficients between observed water surface 
areas for 772 Columbia Plateau wetlands obtained from remote sensing and 
simulated water balance variables such as soil moistures in the top 
(soilm1), middle (soilm2), and bottom (soilm3) layers, precipitation 
(precip), evapotranspiration (evapot), runoff, and snow water equivalent 
(swe). 
	  



 
 
Figure 3.3.14 Correlation coefficients (Pearson’s R) between observed water surface areas for 
Columbia Plateau wetlands using the daily-based multivariate regression model during 
calibration (R.cal daily) and validation (R.val daily) and using the annually-based regression 
model (R.annually) broken out by Groups. Horizontal lines denote R values of 0.5 and 0.7. 
 
Groups. Figures 3.3.15-3.3.19 show examples of wetlands and their fits to the two regression 
models. For example, for the sites depicted in Figure 3.3.15, the simulated multivariate 
regression model reasonably well captures the range and pattern of annual and inter-annual 
variation present. In Figure 3.3.16, the daily-based multivariate model misses significant 
decadal-or-longer fluctuations in wetland water levels (upper panels), but these are reasonably 
captured by the annually-based cool season precipitation model (lower panels). Figures 3.3.17-19 
illustrate poor fits to both models for a selection of representative Group 3 and 4 wetlands. We 
discuss potential drivers of these differences in the Findings section (Section 4) below. Figure 
3.3.20 shows the geographic distribution of Groups 1 and 2 across our three focal field regions of 
the Columbia Plateau. 

Groups 1 and 2 do not align smoothly with our ephemeral-to-permanent hydrologic 
classification. For example, if classified based on their hydrologic patterns using the same 
criteria as for montane wetlands described above, Group 1 includes 21 ephemeral, 159 
intermediate, and 12 perennial wetlands. Group 2, likewise classified, contains 24 intermediate, 
15 perennial, and 1 permanent wetland.  



 
Figure 3.3.15. Group 1, observed wetland water surface areas for 1984-2011 (solid circles) 
compared with the simulated wetland water surface area using the daily-based multivariate 
regression models that were developed during calibration period (1996-2011) (blue lines). Black 
line denotes the boundary between calibration and validation periods. R and NSE values were 
calculated both calibration and validation periods. 



 
 
Figure 3.3.16. Plots of two representative wetlands in Group 2. Top panels: Observed wetland 
water surface areas for 1984-2011 (solid circles) compared with the simulated wetland water 
surface area using the daily-based multivariate regression models that were developed during 
calibration period (1996-2011) (blue lines). Black line denotes the boundary between calibration 
and validation periods. Bottom panels: Observed annual minimum water surface areas for 1984-
2011 (solid circles) compared with simulated wetland water surface area using the regression 
model based on cool season precipitation (annually-based) for 1984-2011 (annually-based) (blue 
lines). R and NSE values were calculated both calibration and validation periods.  
 
 



 
Figure 3.3.17. Group 3 wetlands that show unusually low wetland water levels after year 2006 
(dotted red line). Top panels: Observed wetland water surface areas for 1984-2011 (solid circles) 
compared with the simulated wetland water surface area using the daily-based multivariate 
regression models that were developed during calibration period (1996-2011) (blue lines). Black 
line denotes the boundary between calibration and validation periods. Bottom panels: Observed 
annual minimum water surface areas for 1984-2011 (solid circles) compared with simulated 
wetland water surface area using the regression model based on cool season precipitation 
(annually-based) for 1984-2011 (annually-based) (blue lines). R and NSE values were calculated 
both calibration and validation periods. 



 
Figure 3.3.18. Group 3 wetlands that show unusually high wetland water levels after year 2006 
(dotted red line). Top panels: Observed wetland water surface areas for 1984-2011 (solid circles) 
compared with the simulated wetland water surface area using the daily-based multivariate 
regression models that were developed during calibration period (1996-2011) (blue lines). Black 
line denotes the boundary between calibration and validation periods. Bottom panels: Observed 
annual minimum water surface areas for 1984-2011 (solid circles) compared with simulated 
wetland water surface area using the regression model based on cool season precipitation 
(annually-based) for 1984-2011 (blue lines). R and NSE values were calculated both calibration 
and validation periods. 
 



 
Figure 3.3.19. Group 4 wetlands that show unusually high wetland water levels after year 2006 
(dotted red line). Top panels: Observed wetland water surface areas for 1984-2011 (solid circles) 
compared with the simulated wetland water surface area using the daily-based multivariate 
regression models that were developed during calibration period (1996-2011) (blue lines). Black 
line denotes the boundary between calibration and validation periods. Bottom panels: Observed 
annual minimum water surface areas for 1984-2011 (solid circles) compared with simulated 
wetland water surface area using the regression model based on cool season precipitation 
(annually-based) for 1984-2011 (annually-based) (blue lines). R and NSE values were calculated 
both calibration and validation periods. 



 
Figure 3.3.20. Map of Group 1 and Group 2 wetland locations. Group 1 wetlands had a stronger 
correlation with the top and bottom soil moisture layers of the VIC model. Group 2 wetlands 
were more strongly correlated with average annual cool season precipitation.  
 
Future climate projections of wetland dynamics 
Overall, Group 1 wetlands show a slight to moderate reduction in surface area that might indicate 
reduction in water levels in the 2080s for ephemeral and intermediate wetlands, and a very slight 
average increase for perennial ponds (Table 3.3.3) with no significant difference overall in 
wetland water levels in the 2080s compared to the historical period (Figures 3.3.21-3.3.22). In 
contrast, all wetland types show a slight (not statistically significant) increase in water levels for 
Group 2 sites (Figures 3.3.23-3.3.24; Table 3.3.3). The poor ability of the VIC model to 
reconstruct historical dynamics of Group 3 and 4 wetlands means that any projections of future 
climate impacts on these sites based on the VIC model are not currently well supported. 
Therefore we did not develop climate change projections for these wetlands. 
 
 
 
 
 
 



Table 3.3.3 Relationship between observed hydrologic class and Group 1 and 2 assignment 
based on goodness of fit to VIC simulations. Groups 3 and 4 are not depicted because their 
hydrographs are aberrant in various ways that do not allow confident assignment, and the 
historical model fits are too poor to enable rigorous climate projections. 
 

Group 
Type Number of 

Wetlands 

Average Minimum Water Levels 
(% of full) 

 Historical 2080s 

Group 1 

ephemeral 21 1.52 0.94 

intermediate 159 6.47 5.77 

perennial 12 36.32 37.06 

Group 2 

intermediate 24 24.3 29.7 

perennial 25 44.3 50.1 

permanent 1 77.06 79.06 
 



 
Figure 3.3.21. Projected wetland response to climate change for Group 1 in Columbia Plateau. 
Blue solid lines are wetland hydrographs for year 1984 and red lines show wetland hydrographs 
of year 1984 with climate change perturbation for the 2080s. 



 
Figure 3.3.22. Boxplots of annual water levels for historical, 2080s, and the difference between 
historical and climate change for Group 1 wetlands. There is no significant change in wetland 
minimum water levels for the 2080s. 



 
 
Figure 3.3.23. Projected wetland response to climate change for Group 2 wetlands in the 
Columbia Plateau. Blue solid lines are wetland hydrographs for year 1984 and red lines show 
wetland hydrographs of year 1984 with climate change perturbation for the 2080s. Minimum 
water levels are slightly higher for the 2080s in comparison to historical runs because of 
projected slight increase in cool season precipitation. 
 



 
 
Figure 3.3.24. Boxplots of annual water levels for historical, 2080s, and the difference between 
historical and climate change for Group 2 wetlands, using cool season precipitation as a 
predictor. Wetland minimum water levels are projected to slightly increase for the 2080s due to 
projected increase in precipitation.  
 
 
3.4 Ecological Modeling  
 
Montane Wetlands 
Maximum pond depth was highly 
correlated with both maximum 
size (Spearman correlation 
coefficient = 0.80) and maximum 
percent shallows (-0.82), so we 
conducted a principal component 
analysis (PCA) on these three 
variables. The first PCA axis 
carried the majority of the 
loadings with a straightforward 
interpretation. Lower PCA values 
are bigger, deeper ponds with 
less shallows, while higher PCA 
values are smaller ponds with 
more shallows. We therefore 
used the first PCA axis in our 
logistic regression analyses in 
place of maximum pond depth, 

	  
Figure 3.4.1 First and second axis of principal components 
analysis on pond max size, max depth, and percent shallows. 



percent shallows, and maximum 
pond size, which we removed from 
the analyses. 
 
Rana cascadae (Cascades frog): 
breeding evidence 
 
For Cascades frog breeding 
evidence, AIC model selection 
produced a set of 55 models that held 
95% of the weight from the 
candidate set of 210 models. No 
single top model was supported: 
∆AICmax = 8.26, and maximum wAk = 
0.15. Table 3.4.1 shows the top 
ranked models with ∆AICc < 4. 
(∆AICc of 2-4 is considered 
positive evidence of one 
model having a superior fit.) 
Hydroperiod class and 
elevation had the highest 
variable importance, as they 
were both included in the 
majority of top models 
(Figure 3.4.2). These were 
also the only two variables 
with significant parameter 
coefficient estimates, 
suggesting a higher incidence 
of Cascades frog breeding in 
intermediate and perennial 
ponds (relative to fast-drying 
ephemeral ponds) (Figure 
3.4.3, Table 3.4.2). Fish had 
the third highest variable 
importance. The parameter 
coefficient estimates suggest 
that, despite being non-
significant (Table 3.4.2), this 
factor may have a large 
influence on whether or not 
R. cascadia breeds in a given 
pond. The lack of 
significance of this variable 
may be attributable to the 
small sample size of ponds 

 
Rana cascadae embryo inside an eggmass in a 
montane pond in Olympic National Park. 
 

	  
Figure 3.4.2 Relative ranking of variable importance for 
parameters included in the set of models holding 95% of the 
weight of support based on Akaike weights for Rana 
cascadae breeding evidence. Importance computed by 
summing Akaike weights (ƩwAk ) for every model in which 
each variable was present. 
	  



with fish presence in this dataset (n = 9/168), all of which are in the permanent hydroperiod 
class.  
 
Table 3.4.1. Top ranked models with ∆AICc < 4 for Rana cascadae breeding evidence (BE). elev 
= elevation, hydro = hydroperiod, emergent = maximum percent of pond occupied by emergent 
vegetation, fish = fish presence, side habitat = presence of complex inlet or adjacent wetland 
habitat, substrate = pond bottom substrate, PCA = first axis of PCA, cobble = presence of 
cobbles in the substrate, wooded = percent of pond perimeter occupied by woods. For full set of 
top 55 models holding 95% of all model support, see Appendix D. 
Rank AIC Model ∆AICc wAk 

1 208.8 BE ~ elev + hydro + emergent + fish 0 0.15 
2 209.4 BE ~ elev + hydro + fish + side habitat 0.56 0.11 
3 210.9 BE ~ elev + hydro + substrate + fish 2.09 0.05 
4 211.0 BE ~ elev + hydro + PCA + emergent 2.16 0.05 
5 211.2 BE ~ elev + hydro + cobble + fish 2.39 0.04 
6 211.2 BE ~ elev + hydro + PCA + fish 2.43 0.04 
7 211.4 BE ~ elev + hydro + wooded + fish 2.57 0.04 
8 211.6 BE ~ elev + hydro + fish + downed wood 2.75 0.04 
9 211.6 BE ~ elev + hydro + emergent + side habitat 2.82 0.04 
10 211.9 BE ~ elev + hydro + PCA + side habitat 3.11 0.04 
11 212.1 BE ~ hydro + emergent + fish + side habitat 3.30 0.03 
12 212.4 BE ~ elev + hydro + emergent + downed wood 3.60 0.02 

 
 
Table 3.4.2. Model averaged coefficients and 95% confidence intervals for factors predicting 
injury at the individual and habitat unit levels for Rana cascadae breeding. Variable codes are 
defined in Table 3.4.1. Stars indicate variables with confidence intervals that do not bound 0. 

Variable Model-Averaged Estimate 
(95% CI) 

Unconditional 
SE 

Intercept* -1.79 (-3.20, -0.38) 0.717 
elevation* -0.47 (-0.87, -0.07) 0.204 
PCA 0.34 (-0.24, 0.92) 0.296 
emergent 0.34 (-0.04, 0.72) 0.193 
cobble(yes) -0.14 (-0.97, 0.69) 0.425 
wooded 0.08 (-0.32, 0.49) 0.207 
fish(yes) -2.09 (-4.59, 0.42) 0.278 
hydro(intermediate)* 2.14 (0.88, 3.41) 0.645 
hydro(perennial)* 1.62 (0.50, 2.74) 0.569 
hydro(permanent) 0.80 (-0.45, 2.06) 0.642 
side habitat(yes) 0.57 (-0.26, 1.40) 0.423 
downed wood(yes) -0.29 (-1.14, 0.56) 0.434 
substrate(muck) 1.48 (-0.18, 3.15) 0.850 
substrate(mud.clay.silt) 0.96 (-0.71, 2.64) 0.852 
substrate(sand.gravel) 1.75 (-0.34, 3.84) 1.067 



 

 
Figure 3.4.3 Scaled and centered model-averaged parameter coefficient estimates for the 
variables included in the set of models holding 95% of the weight of support based on Akaike 
weights for Rana cascadae breeding evidence. Hydro.class estimates are in reference to 
ephemeral wetlands. 

 
 
Rana cascadae (Cascades frog): 
adult presence 
 
For Cascades frog adult presence, 
AIC model selection produced a set 
of 11 models that held 95% of the 
weight from the candidate set of 210 
models. The top model had relatively 
strong support (∆AICc for second-
ranked model = 2.83; ∆AICmax = 
8.59; maximum wAk = 0.59; Table 
3.4.3). The top model included 
hydroperiod class, the first PCA axis 
(a measure of pond shape or 
bathymetry), the percent of wooded 
perimeter, and fish presence, all of 

 
Rana cascadae adult in a perennial montane pond in 
Olympic National Park. 
 



which had significant parameter 
coefficient estimates (Figure 3.4.4-
5 and Table 3.4.4). Pond shape 
(PCA) and wooded perimeter had 
the highest variable importance 
and were included in all top 
models, showing an association 
between Cascades frogs adults and 
smaller, shallower ponds (higher 
PCA values) with greater forest 
cover. These variables were 
followed in importance by fish and 
hydroperiod (Figure 3.4.4). Adult 
Cascades frogs were most strongly 
associated with intermediate and 
permanent ponds (relative to fast-
drying ephemeral ponds) (Figure 
3.4.5 Table 3.4.4). In this case fish 
had a significant negative influence 
on the presence of adult Rana 
cascadae (Table 3.4.4) despite the 
small number of sites in which 
they were present (n=9/168).  
 
Table 3.4.3 Top ranked models for 
the set of models holding 95% of 
all model support for Rana 
cascadae adult presence (AP). elev = elevation, hydro = hydroperiod, PCA = first PCA axis, 
wooded = percent of pond perimeter occupied by woods, fish = fish presence, emergent = 
maximum percent of pond occupied by emergent vegetation, side habitat = presence of complex 
inlet or adjacent wetland habitat, substrate = pond bottom substrate, cobble = presence of 
cobbles in the substrate, downed wood = presence of branches and downed wood in the pond. 
 
Rank AIC Model ∆AICc wAk 

1 165.3 AP ~ hydro + PCA + wooded + fish 0 0.59 
2 168.2 AP ~ PCA + emergent + wooded + fish 2.83 0.14 
3 169.0 AP ~ PCA + wooded + cobble + fish 3.68 0.09 
4 170.9 AP ~ elev + PCA + wooded + fish 5.58 0.04 
5 171.7 AP ~ PCA + wooded + substrate + fish 6.36 0.02 
6 171.8 AP ~ PCA + wooded + fish + downed wood 6.47 0.02 
7 172.0 AP ~ hydro + PCA + wooded + cobble 6.67 0.02 
8 172.0 AP ~ PCA + wooded + fish + side habitat 6.70 0.02 
9 172.4 AP ~ hydro + PCA + emergent + wooded 7.11 0.02 
10 172.5 AP ~ elev + hydro + PCA + wooded 7.21 0.02 
11 173.8 AP ~ hydro + PCA + wooded + downed wood 8.51 0.01 

	  
Figure 3.4.4 Relative ranking of variable importance 
for parameters included in the set of models holding 
95% of the weight of support based on Akaike weights 
for Rana cascadae adult presence. Importance 
computed by summing Akaike weights (ƩwAk ) for 
every model in which each variable was present. 
	  



 
Figure 3.4.5 
Scaled and 
centered 
model-
averaged 
parameter 
coefficient 
estimates for 
the variables 
included in the 
set of models 
holding 95% 
of the weight 
of support 
based on 
Akaike 
weights. 
 
 
 
Table 3.4.4 Model averaged coefficients and 95% confidence intervals for factors predicting 
injury at the individual and habitat unit levels. Variable codes are defined in Table 1. Stars 
indicate variables with confidence intervals that do not bound 0. 
 

Variable Model-Averaged Estimate 
(95% CI) 

Unconditional 
SE 

Intercept 0.65 (-0.76, 2.06) 0.720 
elevation 0.23 (-0.17, 0.64) 0.207 
PCA* 1.26 (0.42, 2.10) 0.429 
emergent 0.44 (-0.04, 0.92) 0.246 
cobble(yes) -0.69 (-1.48, 0.10) 0.404 
wooded* 1.82 (0.96, 2.68) 0.438 
fish(yes)* -3.83 (-6.73, -0.93) 1.480 
hydro(intermediate)* 2.04 (0.57, 3.51) 0.750 
hydro(perennial) 0.76 (-0.29, 1.82) 0.538 
hydro(permanent)* 1.60 (0.22, 2.99) 0.705 
side habitat(yes) 0.07 (-0.87, 1.03) 0.487 
downed wood(yes) 0.31 (-0.79, 1.41) 0.562 
substrate(muck) 1.48 (-0.02, 2.98) 0.767 
substrate(mud.clay.silt) 1.43 (-0.07, 2.92) 0.765 
substrate(sand.gravel) 1.51 (-0.47, 3.51) 1.017 

 
 
 



Ambystoma macrodactylum (Long-toed salamander): 
breeding evidence 
 
For long-toed salamander breeding evidence, AIC 
model selection produced a set of 47 models that held 
95% of the weight from the candidate set of 210 
models. No top model was supported (∆AICmax = 
8.59; maximum wAk = 0.21; Table 3.4.5) and included 
hydroperiod class, the percent of wooded perimeter, 
substrate, and the presence of cobble as having the 
highest variable importance (Figure 3.4.6). Of these, 
all but substrate had significant parameter coefficient 
estimates (Figure 3.4.7 and Table 3.4.6), showing 
stronger evidence of breeding in intermediate and 
perennial hydroperiod sites with less wooded 
perimeter and cobble present. While not significant, 
the PCA coefficient aligns with hydroperiod 
observations in a trend towards occupying shallower, 
smaller sites.  
 
Table 3.4.5 Top ranked models with ∆AICc < 4 for 
Ambystoma macrodactylum breeding evidence (BE). 
hydro = hydroperiod, wooded = percent of pond 
perimeter occupied by woods, PCA = first axis of 
PCA, emergent = maximum percent of pond occupied 
by emergent vegetation, substrate = pond bottom substrate, cobble = presence of cobbles in the 
substrate, side habitat = presence of complex inlet or adjacent wetland habitat. For full set of top 
47 models holding 95% of all model support, see Appendix D. 
 
Rank AIC Model ∆AICc wAk 

1 181.1 BE ~ hydro + wooded + substrate + cobble 0 0.21 
2 181.5 BE ~ hydro + PCA + substrate + cobble 0.44 0.17 
3 183.7 BE ~ hydro + wooded + substrate + side habitat 2.62 0.06 
4 184.0 BE ~ hydro + emergent + wooded + substrate 2.91 0.05 
5 184.1 BE ~ hydro + PCA + wooded + substrate 3.01 0.05 
6 184.7 BE ~ hydro + PCA + cobble + side habitat 3.62 0.03 
7 184.8 BE ~ hydro + wooded + cobble + side habitat 3.74 0.03 
8 184.8 BE ~ hydro + substrate + cobble + side habitat 3.75 0.03 

 
 
 
 
 
 
 
 

	  

 
Ambystoma macrodactylum eggs 
(top) and larva approaching 
metamorphosis (bottom) 



 
Figure 3.4.6 Relative ranking of 
variable importance for parameters 
included in the set of models 
holding 95% of the weight of 
support based on Akaike weights 
for Ambystoma macrodactylum 
adult presence. Importance 
computed by summing Akaike 
weights (ƩwAk ) for every model in 
which each variable was present. 
 
 
 
 
  
 
 
 
 
 
 

 
Figure 3.4.7 Model-averaged parameter coefficient estimates for variables included in the set of 
models holding 95% weight of support based on Akaike weights for A. macrodactylum breeding. 



Table 3.4.6 Model averaged coefficients and 95% confidence intervals for factors predicting 
injury at the individual and habitat unit levels for A. macrodactylum breeding. Variable codes are 
defined in Table 1. Stars indicate variables with confidence intervals that do not bound 0. 

Variable Model-Averaged Estimate 
(95% CI) 

Unconditional 
SE 

Intercept* -3.09 (-3.10, -1.06) 1.035 
elevation 0.01 (-0.43, 0.46) 0.229 
PCA 0.65 (-0.08, 1.39) 0.374 
emergent -0.27 (-0.73, 0.19) 0.235 
cobble(yes)* 1.03 (0.07, 2.00) 0.491 
wooded* -0.53 (-1.06, -0.01) 0.270 
fish(yes) -0.28 (-2.80, 2.24) 1.284 
hydro(intermediate)* 2.69 (1.01, 4.36) 0.853 
hydro(perennial)* 2.57 (0.96, 4.18) 0.821 
hydro(permanent) 1.58 (-0.24, 3.40) 0.927 
side habitat(yes) 0.72 (-0.19, 1.63) 0.462 
downed wood(yes) -0.28 (-1.28, 0.72) 0.512 
substrate(muck) -0.01 (-1.81, 1.79) 0.918 
substrate(mud.clay.silt) -0.53 (-2.09, 1.02) 0.795 
substrate(sand.gravel) -17.41 (-2540.03, 2505.20) 1287.070 

 
 
Ambystoma macrodactylum (Long-toed salamander): adult presence 
 
For long-toed salamander adult presence, AIC 
model selection produced a set of 42 models 
that held 95% of the weight from the candidate 
set of 210 models. The top model was 
moderately supported (∆AICc for second-ranked 
model = 3.15; ∆AICmax =  10.00; top model 
maximum wAk = 0.37; Table 3.4.7) and included 
pond shape (PCA axis), the percent of wooded 
perimeter, fish presence, and side habitat having 
the highest variable importance (Figure 3.4.8). 
Of these, all but fish had significant parameter 
coefficient estimates (Figure 3.4.9 and Table 
3.4.8), showing stronger association of A. 
macrodactylum adults with bigger, deeper ponds 
with less shallows, less side habitat, and more 
wooded perimeter. Fish presence was barely not 
significant, with a strongly negatively trend in 
response to fish presence.  
 
 

	  

	  
Ambystoma macrodacylum adults hiding in 
ledges in the pond bank (top) and adult 
underwater in an alpine pond (bottom) 



Table 3.4.7 Top ranked models with ∆AICc < 4 for presence of Ambystoma macrodactylum 
adults. AP = adult presence, PCA = first axis of PCA, hydro = hydroperiod, wooded = percent of 
pond perimeter occupied by woods, fish = fish presence, side habitat = presence of complex inlet 
or adjacent wetland habitat,. For full set of top 42 models holding 95% of all model support, see 
Appendix D. 
 
Rank AIC Model ∆AICc wAk 

1 146.4 AP ~ PCA + wooded + fish + side habitat 0 0.37 
2 149.5 AP ~ hydro + wooded + fish + side habitat 3.15 0.08 
3 150.3 AP ~ PCA + wooded + substrate + fish 3.93 0.05 

 
 
Figure 3.4.7 Relative ranking of variable importance for parameters included in the set of 
models holding 95% of the weight of support based on Akaike weights for A. macrodactylum 
adult presence. Importance computed by summing Akaike weights (ƩwAk ) for every model in 
which each variable was present. 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure 3.4.8 Model-averaged parameter coefficient estimates for variables included in the set of 
models holding 95% weight of support based on Akaike weights for A. macrodactylum adults. 
 
Table 3.4.8 Model averaged coefficients and 95% confidence intervals for factors predicting 
injury at the individual and habitat unit levels for A. macrodactylum adults. Variable codes are 
defined in Table 1. Stars indicate variables with confidence intervals that do not bound 0. 

Variable Model-Averaged Estimate 
(95% CI) 

Unconditional 
SE 

Intercept -1.65 (-3.26, -0.05) 0.818 
elevation 0.05 (-0.39, 0.50) 0.227 
PCA* -0.64 (-1.26, -0.02) 0.318 
emergent -0.05 (-0.53, 0.43) 0.245 
cobble(yes) -0.10 (-1.07, 0.87) 0.496 
wooded* 0.68 (0.23, 1.14) 0.232 
fish(yes) -2.93 (-5.90, 0.03) 1.512 
hydro(intermediate) -0.49 (-2.42, 1.44) 0.985 
hydro(perennial) 0.64 (-0.81, 2.10) 0.745 
hydro(permanent) 1.25 (-0.27, 2.76) 0.774 
side habitat(yes)* -1.52 (-2.91, -0.13) 0.708 
downed wood(yes) 0.36 (-0.64, 1.35) 0.506 
substrate(muck) 2.02 (-0.40, 4.46) 1.240 
substrate(mud.clay.silt) 1.32 (-0.81, 3.44) 1.082 
substrate(sand.gravel) 2.29 (-0.17, 4.75) 1.257 



Ambystoma gracile (Northwestern salamander): 
breeding evidence 
 
For northwestern salamander breeding evidence, AIC 
model selection produced a set of 24 models that held 
95% of the weight from the candidate set of 210 
models. The top model was fairly strongly supported: 
∆AICc for second-ranking model =  4.42; ∆AICmax = 
10.90; maximum wAk = 0.63; Table 3.4.9). The top 
model included elevation, hydroperiod class, the 
percent of wooded perimeter, and fish presence (Table 
3.4.9). Percent wooded, hydroperiod class, fish, and 
elevation had the highest variable importance (Figure 
3.4.10). Of these, parameter coefficient estimates were 
significant for percent wooded, fish, and elevation 
(Figure 3.4.11 and Table 3.4.10), showing stronger 
evidence of breeding in lower-elevation sites with more 
wooded perimeter, and a negative relationship with 
fish. Data for hydroperiod class were highly skewed, 
creating statistical problems (e.g. standard errors 
>2000). Coefficient estimates are reported in the tables, 
but the relevant parameters are not included in Figure 
3.4.11. However the pattern is clear from the raw data: 
0/29 ephemeral hydroperiod sites and only 3/25 
intermediate sites had signs of A. gracile breeding, 
whereas 11/42 perennial sites and 18/41 permanent 
sites had breeding activity, indicating a strong 
association with longer-hydroperiod classes of wetlands.  
 
Table 3.4.9 Top ranked models with ∆AICc < 4 for 
Ambystoma gracile breeding evidence. BE = breeding 
evidence, elev = elevation, hydro = hydroperiod, wooded = percent of pond perimeter occupied 
by woods, emergent = maximum percent of pond occupied by emergent vegetation, fish = fish 
presence. For full set of top 24 models holding 95% of all model support, see Appendix D. 
 
Rank AIC Model ∆AICc wAk 

1 141.1 BE ~ elev + hydro + wooded + fish 0 0.63 
2 145.5 BE ~ hydro + emergent + wooded + fish 4.42 0.07 

 
 
 
 
 
 
 
 

	  

	  
Ambystoma gracile eggmass attached 
to a stick (top) and larva (bottom)	  



 
Figure 3.4.9 Relative ranking of 
variable importance for parameters 
included in the set of models 
holding 95% of the weight of 
support based on Akaike weights for 
A. gracile breeding evidence. 
Importance computed by summing 
Akaike weights (ƩwAk ) for every 
model in which each variable was 
present. 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 3.4.10 Model-averaged parameter coefficient estimates for the variables included in the 
set of models holding 95% of the weight of support based on Akaike weights for A. gracile 
breeding evidence. Hydrologic class is missing from the plot due to the scale of SE. 



Table 3.4.10 Model averaged coefficients and 95% confidence intervals for factors predicting 
injury at the individual and habitat unit levels. Variable codes are defined in Table 1. Stars 
indicate variables with confidence intervals that do not bound 0. 

Variable Model-Averaged Estimate (95% CI) Unconditional 
SE 

Intercept -17.69 (-2226.82, 2191.44) 1127.130 
elevation* -0.56 (-1.06, -0.06) 0.256 
PCA -0.30 (-1.01, 0.41) 0.362 
emergent -0.39 (-1.02, 0.24) 0.320 
cobble(yes) 0.09 (-0.83, 1.01) 0.471 
wooded* 0.72 (0.25, 1.19) 0.240 
fish(yes)* -3.55 (-6.54, -0.55) 1.528 
hydro(intermediate) 16.57 (-2252.29, 2285.44) 1157.607 
hydro(perennial) 17.10 (-2251.77, 2285.97) 1157.607 
hydro(permanent) 17.78 (-2251.09, 2286.65) 1157.607 
side habitat(yes) -0.20 (-1.23, 0.85) 0.533 
downed wood(yes) 0.25 (-0.75, 1.26) 0.514 
substrate(muck) 0.47 (-1.05, 2.00) 0.780 
substrate(mud.clay.silt) -0.06 (-1.66, 1.53) 0.813 
substrate(sand.gravel) 0.38 (-1.78, 2.54) 1.100 

 
 
 
 
Ambystoma gracile (Northwestern 
salamander): adult presence 
 
For northwestern salamander adult 
presence, AIC model selection produced 
a set of 18 models that held 95% of the 
weight from the candidate set of 210 
models. The top model was moderately 
supported: ∆AICc for the second-ranked 
model = 2.79; ∆AICmax =  7.17, 
maximum wAk = 0.39; Table 3.4.11). The 
top model included the percent of 
wooded perimeter, hydroperiod class, 
fish presence, and the presence of side 
habitat as having the highest variable 
importance (Figure 3.4.12). Of these, all 
had significant parameter coefficient 
estimates except hydroperiod class, due 
to the same statistical issues regarding 
data skew as for A. gracile breeding 
evidence (Figure 3.4.13 and Table 

	  

	  
Ambystoma gracile paedomorph (aquatic adult, 
top) and terrestrial adult (bottom)	  
	  



3.4.12). Adult gracile were associated with ponds with less side habitat and more wooded 
perimeter, and were negatively associated with fish. As with breeding evidence, adult A. gracile 
predominantly used longer-hydroperiod sites: zero adults were detected in ephemeral ponds, 1/27 
intermediate ponds had adults whereas adult A. gracile were found in 9/44 perennial and 16/43 
permanent ponds. Note that in the case of A. gracile, “adults” refer to both terrestrial morphs and 
paedomorphs, which are the mature aquatic adult form. 
 
Table 3.4.11 Top ranked models for the set of models holding 95% of all model support. BE = 
breeding evidence, elev = elevation, hydro = hydroperiod, shallow = maximum percent shallows, 
wood = percent of pond perimeter occupied by woods, emergent = maximum percent of pond 
occupied by emergent vegetation, size = maximum size of the pond during the breeding season, 
cobble = presence of cobbles in the substrate, side = presence of side habitat. 
Rank AIC Model ∆AICc wAk 

1 113.5 AP ~ hydro + wooded + fish + side habitat 0 0.39 
2 116.3 AP ~ PCA + wooded + substrate + fish 2.79 0.10 
3 117.1 AP ~ hydro + PCA + wooded + fish 3.56 0.07 
4 117.6 AP ~ PCA + wooded + fish + side habitat 4.02 0.05 
5 117.6 AP ~ hydro + wooded + substrate + side habitat 4.11 0.05 
6 117.8 AP ~ elev + hydro + wooded + side habitat 4.25 0.05 
7 117.9 AP ~ hydro + wooded + side habitat + downed wood 4.36 0.04 
8 117.9 AP ~ hydro + wooded + cobble + side habitat 4.36 0.04 
9 118.0 AP ~ hydro + PCA + wooded + side habitat 4.43 0.04 
10 118.0 AP ~ hydro + emergent + wooded + side habitat 4.50 0.04 
11 119.3 AP ~ hydro + wooded + substrate + fish 5.81 0.02 
12 119.4 AP ~ elev + hydro + wooded + fish 5.83 0.02 
13 119.9 AP ~ hydro + wooded + fish + downed wood 6.41 0.02 
14 120.0 AP ~ hydro + emergent + wooded + fish 6.42 0.02 
15 120.0 AP ~ hydro + wooded + cobble + fish 6.46 0.02 
16 120.1 AP ~ PCA + wooded + fish + downed wood 6.52 0.01 
17 120.5 AP ~ PCA + wooded + cobble + fish 6.92 0.01 
18 120.7 AP ~ elev + PCA + wooded + fish 7.17 0.01 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure 3.4.11 Relative 
ranking of variable 
importance for 
parameters included in 
the set of models 
holding 95% weight of 
support based on 
Akaike weights for A. 
gracile adult presence 
(terrestrial morphs and 
paedomorphs). 
Importance computed 
by summing Akaike 
weights (ƩwAk ) for 
every model in which 
each variable was 
present. 
 
 
 
 
 

 
Figure 3.4.12 Model-averaged parameter coefficient estimates for variables included in the set 
of models holding 95% of the weight of support based on Akaike weights for A. gracile adults. 

	  



Table 3.4.12 Model averaged coefficients and 95% confidence intervals for factors predicting 
injury at the individual and habitat unit levels for A. gracile adult presence. Variable codes are 
defined in Table 1. Stars indicate variables with confidence intervals that do not bound 0. 

Variable Model-Averaged Estimate 
(95% CI) 

Unconditional 
SE 

Intercept -15.96 (-2715.92, 2683.99) 1377.55 
elevation 0.18 (-0.32, 0.70) 0.26 
PCA -0.81 (-1.74, 0.13) 0.48 
emergent 0.13 (-0.43, 0.71) 0.29 
cobble(yes) -0.32 (-1.40, 0.75) 0.55 
wooded* 0.99 (0.42, 1.55) 0.29 
fish(yes)* -3.31 (-6.64, 0.02) 1.70 
hydro(intermediate) 15.89 (-3007.37, 3039.15) 1542.51 
hydro(perennial) 17.61 (-3005.65, 3040.87) 1542.51 
hydro(permanent) 18.24 (-3005.02, 3041.49) 1542.51 
side habitat(yes)* -1.78 (-3.33, -0.24) 0.79 
downed wood(yes) 0.37 (-0.74, 1.48) 0.57 
substrate(muck) 2.54 (-0.42, 5.51) 1.51 
substrate(mud.clay.silt) 2.21 (-0.51, 4.93) 1.39 
substrate(sand.gravel)* 3.39 (0.28, 6.51) 1.59 

 
 
 
3.5 Synthesis 
Montane Wetlands 
 
Assessment of amphibian vulnerability to future climate change  
Sensitivity: Both aquatic life stages (eggs and tadpoles) and adult Rana cascadae (Cascades frog) 
were associated with intermediate hydroperiod ponds, which are also the most sensitive class of 
wetlands to climate change. Ambystoma macrodactylum breeding is associated with intermediate 
and perennial hydroperiod wetlands, both of which are anticipated to experience reduced water 
levels and in some cases conversion to shorter-hydroperiod ponds. For this species, which 
requires multiple years at higher elevations for successful metamorphosis, an increase in the 
frequency of pond drying, as is projected for these kinds of sites, will have a negative effect on 
recruitment. Adults in contrast are more strongly associated with deeper, less shallow ponds that 
are less sensitive to climate impacts. Ambystoma gracile appear to be the least sensitive of the 
three species to climate change, since their breeding and adult habitat use are skewed towards 
longer hydroperiod permanent ponds. While they also use more climate-vulnerable perennial 
ponds, they do not rely strongly on the most sensitive wetland types, the intermediate and 
ephemeral ponds, as either breeding or adult habitat. 
 
Exposure: Exposure varies across the three parks with significant variation in the increase in the 
likelihood of drying (e.g. for intermediate ponds) across different regions of the parks. Parks also 
differ in the underlying distribution of pond types across the landscape (Figures 3.5.1-3). In 
assessing the distribution of sites, it is important to note that our perennial wetland class does not 



align well with any of the NWI categories, so perennial ponds are likely under-represented in this 
assessment. Also, as the results of mapping study in Mount Rainier National Park show (Section 
3.1), small wetlands of any hydrologic type are substantially underrepresented by the NWI in the 
montane regions we have studied. Therefore it is fair to assume that we are underestimating the 
total amount of small wetland habitat, which is of course our primary interest for two species, 
and also the most at-risk wetland type. We discuss approaches to dealing with this deficiency 
below. In the meantime, acknowledging the limitations, Figures 3.5.1-3.5.3 and Tables 3.5.1-
3.5.3 show the distribution of NWI mapped wetlands overlaid with the VIC model projections 
for the change in probability of drying for intermediate ponds. Since we cannot parameterize 
analogous projections for perennial ponds (due to no history of drying in the historical record), 
we use this projection to also indicate relative risk to perennial ponds assuming that the 
mechanisms affecting both are the same. Our findings from our focal sites project that 22% of 
current perennial ponds will become intermediate wetlands by the 2080s, and 3% will become 
ephemeral. (In contrast, 58% of intermediate wetlands are projected to become ephemeral.) 
These estimates can be applied to the list below to estimate the shift from perennial to other pond 
types within each VIC cell (colored grid cell).  
 In Mount Rainier National Park, our projections suggest that the areas of highest climate  
 

 
Figure 3.5.1 Mount Rainier National Park wetland and amphibian vulnerability reference map. 
Colored squares represent VIC grid cells and their projected proportion of change in drying 
probability for intermediate wetlands. The axis letters and numbers are referenced in Table 3.5.1. 



 
Table 3.5.1. Drying probability reference map for Mount Rainier National Park 
 

Cell 
2080 Drying 
Probability 

Δ Drying 
Probability  Ephemeral Intermediate Perennial Permanent Total Fish Ponds 

A1 0.98 0.19 0 2 0 0 2 0 
A2 0.99 0.15 0 2 0 2 4 1 
A3 0.99 0.12 0 1 0 3 4 0 
A4 1 0.05 0 0 0 0 0 0 
B1 0.99 0.11 2 32 0 15 49 2 
B2 0.99 0.68 4 52 0 35 91 3 
B3 1 0.06 4 55 0 20 79 5 
B4 1 0.05 4 9 0 1 14 1 
C1 0.99 0.17 5 32 0 24 61 7 
C2 0.35 0.85 0 30 0 6 36 1 
C3 0.82 0.32 5 37 0 5 47 0 
C4 1 0.06 2 17 0 5 24 1 
D1 1 0.36 13 19 0 10 42 4 
D2 0.98 0.85 4 19 0 8 31 1 
D3 1 0.83 3 43 0 28 74 5 
D4 1 0.7 0 0 0 1 1 1 
E1 1 0.28 2 32 0 23 57 14 
E2 1 0.37 15 35 0 20 70 3 
E3 1 0 1 20 0 11 32 1 
E4 1 0 0 3 0 1 4 0 
F1 1 0.1 1 8 0 0 9 0 
F2 1 0.63 1 14 0 19 34 8 
F3 1 0.1 3 28 1 16 48 0 
F4 1 0 0 1 0 1 2 0 
G3 1 0.25 0 5 0 1 6 0 

  
TOTALS 69 496 1* 255 821 58 

 
* Note that perennial ponds do not map well to NWI wetland classes, so are underrepresented in 
our assessment. 
 
 
impacts that overlap with large numbers of intermediate and perennial ponds are in the central 
southern part of the Park, with additional areas of significantly elevated climate risk in the east  
and west (Figure 3.5.1). In North Cascades National Park, the regions of greatest change in the 
probability of pond drying due to climate change occur in a somewhat patchy pattern across the 
western half of the park, and with stronger climate impacts generally projected for the west side 
of the Cascades crest, with exceptions. North Cascades has relatively few mapped wetlands, 
many of which are permanent so less subject to the kinds of climate impacts we are considering. 
Many of the clusters of intermediate ponds in the southern part of the Park appear to be at lower 
risk of climate impacts, while those in the far northern and western regions of the Park are more 
at risk. Olympic National Park by contrast has many mapped wetlands, a large proportion of 
which are intermediate wetlands. The areas of greatest change in wetland drying probability are  



 
 
Figure 3.5.2 North Cascades National Park wetland and amphibian vulnerability reference map.  
Colored squares represent VIC grid cells and their projected proportion of change in drying 
probability for intermediate wetlands. The axis letters and numbers are referenced in Table 3.5.1. 
 
 
Table 3.5.2. Drying probability reference map for North Cascades National Park 
 

Cell 
2080 Drying 
Probability 

Δ Drying 
Probability  Ephemeral Intermediate Perennial Permanent Total Fish Ponds 

A2 0.55 0.54 0 2 0 2 4 0 
A3 0.82 0.74 0 0 0 2 2 0 
A4 1 0.09 0 0 0 0 0 0 
B1 0.97 0.55 0 1 0 5 6 0 
B2 0.83 0.68 0 2 0 3 5 0 
B3 0.85 0.68 11 4 0 4 19 4 
B4 0.98 0.71 0 0 0 13 13 11 
B5 0.94 0.67 0 0 0 0 0 1 
C1 1 0 10 10 2 1 23 2 
C2 0.84 0.69 0 2 0 2 4 1 
C3 0.93 0.59 1 0 0 1 2 0 
C4 0.99 0.67 1 0 0 3 4 5 
C5 0.99 0.04 0 0 0 0 0 0 



Cell 
2080 Drying 
Probability 

Δ Drying 
Probability  Ephemeral Intermediate Perennial Permanent Total Fish Ponds 

D2 0.94 0.73 0 0 1 15 16 10 
D3 0.78 0.78 0 0 0 1 1 1 
D4 0.98 0.76 4 2 0 6 12 4 
D5 1 0.41 1 1 0 0 2 0 
D6 0.95 0.65 0 0 0 0 0 1 
E1 0.68 0.68 0 1 0 2 3 1 
E2 0.73 0.73 1 3 0 1 5 0 
E3 0.98 0.27 0 2 1 1 4 1 
E4 0.99 0.54 1 0 0 0 1 0 
E5 0.98 0.46 0 0 0 3 3 4 
E6 0.93 0.49 0 0 0 0 0 0 
F1 0.89 0.72 0 1 0 0 1 0 
F2 0.99 0.25 0 2 0 7 9 3 
F3 0.99 0.12 0 5 1 3 9 2 
F4 0.93 0.72 0 0 0 1 1 4 
F5 0.87 0.73 0 0 0 8 8 4 
F6 0.95 0.69 0 0 0 5 5 2 
G1 1 0.08 0 0 0 0 0 2 
G2 1 0.19 0 0 0 6 6 0 
G3 1 0.17 0 0 0 0 0 0 
G4 1 0.17 0 0 0 0 0 2 
G5 1 0.22 0 12 1 4 17 0 
G6 1 0.63 0 0 0 4 4 1 
G7 1 0.05 0 2 0 0 2 0 
H1 1 0.07 0 0 0 0 0 1 
H2 1 0.15 0 0 0 0 0 0 
H3 1 0 0 0 0 0 0 0 
H4 1 0.02 0 0 0 0 0 0 
H5 1 0 4 17 1 3 25 6 
H6 1 0.19 0 8 0 3 11 0 
H7 1 0.3 2 17 0 2 21 1 
I5 1 0.04 0 4 0 1 5 0 
I6 1 0.43 1 7 0 5 13 0 
I7 1 0 0 9 0 0 9 1 
I8 1 0.13 0 0 0 0 0 0 
J5 1 0 0 0 0 0 0 0 
J6 1 0.1 1 4 0 6 11 0 
J7 1 0 3 6 0 4 13 3 
J8 1 0 0 0 0 0 0 1 
K6 1 0.23 0 6 0 2 8 3 
K7 1 0.03 0 2 0 5 7 7 
K8 1 0 0 0 0 0 0 0 
K9 1 0 0 0 0 0 0 0 
L6 1 0.01 0 1 0 2 3 0 
L7 1 0.01 0 0 0 0 0 2 
L8 1 0.13 0 0 0 0 0 0 
L9 1 0 0 0 0 0 0 0 
M8 1 0.09 0 0 0 0 0 2 
  TOTALS 41 134 8* 140 323 95 
 
* Note that perennial ponds do not map well to NWI wetland classes, so are underrepresented in 
our assessment. 
 



projected to be the central and western regions of Olympic National Park (Figure 3.5.3), which 
include some areas (such as along river valleys) with large numbers of intermediate wetlands. 
Some of these regions are at elevations too low to be occupied by Cascades frogs, for example, 
but are likely to be used by Ambystoma macrodactylum, which can be found at elevations 
extending down to sea level (though the developmental constraints are less severe as they can 
metamorphose faster in warmer, lower elevation regions). Of greatest concern for our purposes 
in this study are the mid to high-elevation regions, primarily within the central part of the Park, 
where large numbers of intermediate wetlands overlap with elevated drying risk. Table 3.5.3 
shows the distribution of these sites in tabulated form.  

 
Figure 3.5.3. Olympic National Park wetland and amphibian vulnerability reference map.  
Colored squares represent VIC grid cells and their projected proportion of change in drying 
probability for intermediate wetlands. The axis letters and numbers are referenced in Table 3.5.1. 
 
 
Table 3.5.3. Drying probability reference map for Olympic National Park 
 

Cell 
2080 Drying 
Probability 

Δ Drying 
Probability Ephemeral Intermediate Perennial Permanent Total Fish Ponds 

A7 1.00 0.06 1 4 0 0 5 0 
B2 1.00 0.00 0 0 0 0 0 0 
B3 1.00 0.01 4 20 0 0 24 0 
B6 1.00 0.03 0 0 0 0 0 0 
B7 1.00 0.06 4 15 0 4 23 0 
C2 1.00 0.39 0 0 0 0 0 0 



Cell 
2080 Drying 

Probability 
Δ Drying 

Probability Ephemeral Intermediate Perennial Permanent Total Fish Ponds 
C6 1.00 0.02 10 37 1 3 51 0 
D1 1.00 0.00 0 2 0 0 2 0 
D2 0.93 0.44 0 0 0 0 0 0 
D3 0.89 0.42 0 5 0 0 5 0 
D4 0.86 0.46 4 21 0 1 26 0 
D5 0.86 0.45 0 0 0 0 0 0 
D6 1.00 0.01 13 27 0 1 41 0 
E1 1.00 0.00 0 10 0 2 12 6 
E2 1.00 0.35 5 7 0 5 17 0 
E3 0.94 0.57 7 44 0 6 57 3 
E4 0.87 0.61 8 25 0 3 36 0 
E5 0.90 0.51 8 30 0 0 38 0 
E6 0.90 0.40 0 0 0 3 3 0 
E7 0.92 0.38 6 25 0 7 38 0 
E8 1.00 0.02 0 0 0 0 0 0 
F1 1.00 0.00 0 0 0 2 2 0 
F2 0.99 0.13 9 24 0 17 50 26 
F3 0.90 0.53 9 24 0 21 54 2 
F4 0.84 0.51 1 29 0 6 36 0 
F5 0.88 0.50 4 33 0 13 50 0 
F6 0.93 0.34 0 0 0 3 3 0 
F7 0.84 0.51 6 25 0 7 38 0 
G1 1.00 0.18 0 2 0 2 4 0 
G2 0.95 0.78 8 12 0 21 41 1 
G3 0.94 0.56 10 14 0 39 63 19 
G4 0.83 0.55 0 5 0 7 12 0 
G5 0.90 0.54 2 34 0 13 49 0 
G6 1.00 0.33 1 8 0 18 27 0 
G7 1.00 0.52 9 48 0 0 57 0 
H1 1.00 0.00 0 2 0 0 2 0 
H2 1.00 0.10 0 3 0 11 14 0 
H3 0.98 0.59 2 9 0 9 20 0 
H4 0.32 0.32 8 25 0 3 36 0 
H5 0.83 0.72 0 8 0 23 31 0 
H6 1.00 0.04 3 27 0 20 50 1 
H7 1.00 0.02 5 47 0 4 56 0 
I1 1.00 0.00 0 4 0 0 4 0 
I2 1.00 0.01 5 11 0 2 18 0 
I3 1.00 0.55 1 6 0 24 31 0 
I4 0.92 0.72 2 1 0 9 12 0 
I5 0.88 0.68 5 7 0 16 28 0 
I6 1.00 0.23 4 24 0 11 39 0 
I7 1.00 0.08 0 5 0 10 15 0 
J1 1.00 0.00 0 0 0 0 0 0 



Cell 
2080 Drying 

Probability 
Δ Drying 

Probability Ephemeral Intermediate Perennial Permanent Total Fish Ponds 
J2 1.00 0.00 0 4 0 0 4 0 
J3 1.00 0.10 1 9 0 0 10 0 
J4 0.95 0.57 8 27 0 9 44 0 
J5 0.96 0.48 0 6 0 24 30 0 
J6 1.00 0.05 7 14 0 11 32 0 
J7 1.00 0.04 0 8 0 1 9 1 
K1 1.00 0.00 0 0 0 1 1 0 
K2 1.00 0.04 0 3 0 6 9 3 
K3 1.00 0.44 0 9 0 28 37 4 
K4 0.98 0.61 1 1 0 5 7 0 
K5 0.99 0.78 0 6 0 24 30 0 
K6 1.00 0.04 1 12 0 18 31 0 
K7 1.00 0.00 0 8 0 1 9 0 
L2 1.00 0.00 0 0 0 1 1 0 
L3 1.00 0.67 2 6 0 13 21 4 
L4 1.00 0.59 1 5 0 28 34 0 
L5 1.00 0.78 2 5 0 28 35 0 
L6 1.00 0.04 0 2 0 19 21 1 
L7 1.00 0.00 1 6 1 11 19 1 
M2 1.00 0.00 0 0 0 0 0 0 
M3 1.00 0.06 0 7 0 4 11 0 
M4 1.00 0.00 3 9 0 22 34 1 
M5 1.00 0.00 1 4 0 4 9 0 
M6 1.00 0.00 0 3 0 15 18 1 
N3 1.00 0.00 0 0 0 0 0 0 
N4 1.00 0.14 0 0 0 2 2 0 
N5 1.00 0.00 3 9 0 5 17 0 
N6 1.00 0.00 0 0 0 0 0 0 

  
TOTALS 198 885 2* 626 1711 74 

 
* Note that perennial ponds do not map well to NWI wetland classes, so are underrepresented in 
our assessment. 
 
 
Adaptive capacity: We highlight one primary option for management-based climate adaptation, 
which is the removal of introduced fish that eat amphibians and tend to limit their distributions to 
shallower and more at-risk ponds and wetlands (Ryan et al. 2014). Fish removals are within the 
mandate of the National Parks and are already underway in North Cascades National Park and 
under consideration elsewhere. As a first step, we report on the location and number of ponds 
with fish, based on National Park Service records, in relation to the distribution of wetland types 
and increased drying risk (triangles denoted in Figures 3.5.1-3.5.3 and listed in Tables 3.5.1-
3.5.3). From a biological standpoint, the degree to which species like Rana cascadae and 
Ambystoma macrodactylum may be able to hasten development sufficiently under warmer 



conditions to compensate for reductions in hydroperiod is an open question, and was not the 
subject of our research. We discuss what is known on this topic in the discussion below 
 
 
Columbia Plateau Wetlands 
Our intention in this study was to overlay climate projections for Columbia Plateau wetlands 
with known distributions of focal amphibians such as tiger salamanders in order to make a 
preliminary assessment of climate risk for this region. Given the variation in performance of the 
VIC model for Columbia Plateau sites, coupled with limited accessible biological data, we do not 
have a sufficiently strong basis of information to conduct a meaningful assessment but hope to 
do so in the future. 
 
 
4. Analysis and Findings  
 
4.1 Remote-Sensing of Wetlands 
Montane Wetlands 
The mapping study for Mount Rainier National Park highlights the high errors of omission of 
small wetlands, many of which represent critical habitat for amphibians, invertebrates, and other 
species, in the National Wetland Inventory. Our findings highlight the need for LiDAR across 
broader regions of the Pacific Northwest in order to update wetland maps. Object based image 
analysis of LiDAR datasets mapped substantially more montane wetlands than either the NWI or 
the use of object based image analysis without the use of LiDAR data. Through the use of 
LiDAR intensity imagery and hydrologic flow modeling of the LiDAR derived digital terrain 
model we were able to map wetlands that were not detected through visual assessment. Although 
our secondary analysis exploring remote sensing variables to predict hydrology did not produce 
conclusive results, it does show promise given a larger sample size.  
 
Columbia Plateau Wetlands 
The new remote-sensing methods developed here make it possible to reconstruct hydrologic 
dynamics of wetlands (Halabisky et al., 2013b). This is a fundamental advance, given that the 
key limiting factor in much wetland science, and in particular assessment of climate impacts and 
change over time (wetland loss, gain, structural change, etc) is the lack of data on historical 
wetland dynamics. These methods and the datasets they generate can be used in a large number 
of ways ranging from research applications, to monitoring, to support for on-the-ground 
decision-making, to higher order policy evaluations.  

For example, as we demonstrate here, reconstructed hydrologic datasets provide 
important validation datasets for retrospective modeling studies, which make it possible to 
calibrate models of future climate impacts. Classification of wetland habitat based on seasonal 
wetland hydrology captured through remote sensing can also be used for a very broad range of 
conservation, restoration, climate adaptation, and other management applications such as 
identification of species habitat, landscape vulnerability assessments, and quantification of 
ecosystem function and services (e.g. water storage capability, carbon and other nutrient fluxes, 
and pollution filtration to name a few). They can also be used at local and regional scales to 
locate wetlands undergoing abnormal change. Together with climate data this gives land 
managers a detailed characterization of wetland stressors useful for targeting conservation and 



restoration efforts. Finally, at regional and broader scales these methods can be used to enable 
evaluation of policy objectives such as No Net Loss.  
 
4.2. Monitoring of Focal Field Sites 
One of the key limiting factors in wetland science is that lack of data. The empirical datasets 
developed during this project support not only the analyses done here, but also serve as a 
repository of information to support future studies. 
 
4. 3 Climate-Hydrologic Modeling 
The methods developed here represent a substantial advance in our capacity to model climate 
impacts to wetlands. Most wetlands models are highly data-intensive yet are implemented for 
single wetlands. In a few cases, local wetland dynamics have been interpolated across broader 
regions to explore potential climate impacts (Johnson et al. 2005, 2010). Our work represents the 
first application of a macroscale model to address climate impacts on wetlands in particular 
across broad geographic regions. The VIC’s capacity to generate projections at two scales – the 
individual pond and the region – underlies its strength as a modeling tool to support research and 
management. 
 
Montane Wetlands 
In general, our models successfully captured historical wetland dynamics during the ecologically 
important summer drawdown seasons for four different wetland types. However, the regression 
models were not as robust in capturing different behavior in different years, highlighting the 
need for longer (>5 year) datasets. Additionally, datasets with higher within-year resolution 
would strengthen the regression approach and enable us to better understand both sources of 
model error (e.g. geology and soil types, topography, distance from weather stations, etc) as well 
as the uncertainty in the range of potential climate impacts and the hydrologic drivers that 
underlie impacts on wetlands. Nonetheless, these models, are an important first step in 
understanding wetland response to climate, and strongly suggest that, looking forward, climate 
change will significantly alter water availability for individual wetlands, and will lead to 
substantial future shifts in the distribution and composition of wetlands across montane 
landscapes of the Pacific Northwest.  
 
Historical model performance 
Soil moisture in the bottom soil layer was the best predictor of wetland drawdown for most of 
the sites investigated, supporting the hypothesis that wetland drawdown cycles are frequently 
associated with relatively slow drainage and evapotranspiration processes. The regression 
models demonstrated generally good performance across all four types of montane wetlands 
within years, successfully capturing the general time series behavior of each wetland. However, 
regression models performed better in some years than others and simulations were not able to 
capture all observed variability (e.g. overestimated wetland minimum water level during 2006 in 
the Deschutes National Forest site, the error in drawdown timing in the Trinity-Alps in 2003, and 
the missed drawdown timing and/or minimum water levels in Olympic National Park in 2012). 
These spatial and temporal variations in model performance are expected, and are seen in other 
comparisons between simulated and observed data at fine spatial scales, such as snow water 
equivalent measured at individual snow courses (Mote et al., 2005). One reason for the 
discrepancy is that local precipitation is often imperfectly captured in the driving data sets for the 



VIC model at high elevations (e.g. data from meteorological stations at lower elevations are 
interpolated to higher elevations in landscapes with high orographic variation). The estimated 
uncertainty using multiple years of observations in the Oregon and California sites confirmed 
that our approach is fairly robust in some regions and/or years. However, at times uncertainties 
are broad enough to be biologically meaningful (e.g. in terms of evaluating risk to particular 
species). Likewise, the failure of the regression models to effectively capture strongly different 
patterns of wetland response to across very different weather years in Olympic National Park 
shows that this approach is not universally robust. Additional water-level data would help better 
evaluate the performance of the models, and likely also improve their performance. 
 
Climate impacts on wetlands 
Our climate-change projections demonstrate that all four of the wetland types on which we 
focused (ephemeral, intermediate, perennial, and permanent wetlands) are likely to experience 
hydrologic changes in response to future climate. However, the intensity and duration of climate 
change effects will differ markedly among the four types. These changes are also likely to lead to 
transitions along the continuum of wetland types captured in our hydrologic classes. Specifically, 
some ephemeral wetlands may essentially disappear and more than half of currently ecologically 
productive intermediate montane wetlands are projected to become ephemeral wetlands by the 
2080s, as more rapid recession rate and earlier drawdown causes wetlands to reach their bottom 
volume earlier, resulting in more frequent and longer dry seasons in summer. For some perennial 
wetlands (e.g. Washington sites), transitions from perennial to intermediate wetlands or even to 
ephemeral wetlands are also projected as wetland water levels drop under climate change. 
Driving these changes is the fact that most montane wetlands are located either in snow-
dominated watersheds or mixed-rain-and-snow watersheds where snowmelt is a key water 
source in late spring and summer. Because a warmer climate is likely to cause less snow 
accumulation in winter and earlier snowmelt in spring, montane wetlands are particularly 
susceptible to climate change, especially in combination with projected drier summers (Hamlet 
et al., 2013; Elsner et al., 2010). 

Comparison between wetlands in Washington and those in Oregon and California also 
shows that wetlands with seemingly similar hydrologic characteristics are likely to have different 
sensitivity to climate change depending on local conditions. For example, perennial wetlands in 
our focal sites in Willamette and Deschutes National Forests, Oregon are likely to be less 
sensitive to climate change in terms of minimum water level compared to those in Washington. 
For perennial wetlands in Oregon, simulated summer soil moisture in the VIC simulations was 
close to residual values nearly every year but the wetlands did not dry out (maintaining ~20 % of 
their maximum depth) under the current climate. This behavior suggests that these wetlands are 
coupled to more extensive deep groundwater sources, not captured in the VIC simulations, than 
wetlands in Washington. For the climate-change scenarios, wetlands in Oregon and California 
are projected to have earlier drawdown and reach their minimum water level earlier, but without 
drying out. This supports the argument that wetlands connected to deeper groundwater sources 
are less vulnerable to increased frequency of drying when compared to surface water-fed 
wetlands (Johnson et al., 2009). However, because the VIC model does not include a deep 
groundwater component, more sophisticated modeling approaches (such as the use of fine scale 
groundwater models) may be required to fully capture these effects (Wenger et al., 2010; Safeeq 
et al., 2014). 
 



Water temperature modeling 
Our models were able to generally reproduce historical patterns of wetland temperature 
dynamics, so suggest that this approach could be expanded to evaluate water temperature 
impacts of climate change in more detail. Based on our 18 wetlands, our projections show a 
general increase (average ~2˚C) in the maximum water temperature for all sites in response to 
increased air temperatures associated with climate change. For permanent wetlands that are 
generally deeper than other wetland types, observed water temperature showed much less 
fluctuation on a daily time step (i.e. less sensitive to air temperature) than that of other wetland 
types. As a result, permanent wetlands showed lower goodness of fit values than other wetland 
types. Our small sample set of permanent wetlands suggests that elevation may influence 
sensitivity of water temperatures in permanent ponds to climate change, as would be anticipated 
based on other research on elevational gradients in hydrologic impacts of climate change. The 
extent to which the average ~2˚C increase in water temperature will affect the biota and function 
of sites is likely to be species-specific. These kinds of projections could support research on 
these impacts by providing a range of plausible temperature effects based on climate projections. 
 
Puget Lowlands Wetlands 
Models based on a small number of exploratory sites in one region of the Puget lowlands suggest 
that climate impacts on lower elevation wetlands on the west side of the Cascades may be less 
severe than impacts at higher elevations. While a broader base of research (more wetland types, 
across a broader range of low-elevation regions) is needed to test these conclusions, our findings 
align with the notion that aquatic systems at middle and higher elevations are likely to be more 
influenced by climate change due to shifts in snowpack. Snowpack is much less of a factor in 
lower-elevation watersheds that are already rain-dominated, where patterns of precipitation and 
associated water flows are projected to shift less dramatically than at higher-elevation sites 
(Hamlet et al. 2005, Mote et al. 2005). 
 
Columbia Plateau Wetlands 
Historical model performance 
The VIC model was able to reasonably reproduce historical patterns of wetland dynamics in 
roughly one third of the wetlands studied, and unable to do so in the rest. In the sites where the 
VIC approach was reasonably successful, this allows us to 1) further assess historical hydrologic 
patterns, extending the dataset developed through remote sensing to a longer historical time 
series (92 years instead of 25), and 2) to make some preliminary assessments of climate impacts 
on those wetlands that appear to be fairly clearly tied to daily or annual patterns of climate 
variability. Overall, this initial exploration also highlights the value of these tools for generating 
more nuanced research questions to explore that will help us better understand the drivers of 
wetland dynamics. Our initial division of our focal sites into four groups, based on description of 
their hydrologic behavior in relation to climate, allows us to begin to parse the many kinds of 
influences that are likely affecting wetlands in the Columbia Plateau in order to further explore 
them in a more mechanistic framework.  

For example, Group 1 wetlands clearly track the high frequency variability associated 
with seasonal climate variability, which VIC reproduces. This suggests that, for this group of 
wetlands, there is some physical basis in terms of soil characteristics or other features that create 
stronger connections to groundwater sources, which in turn determine wetland behaviors 
mechanistically captured by the VIC model. A clear next step with these wetlands then is to 



further explore their association with soil, landscape, and other local features likely to affect 
hydrology, and to investigate how these may differ from other wetlands that do not fit well with 
VIC simulations.  

Both Groups 1 and 2 in some cases exhibited decadal as well as daily and annual patterns 
of variation – i.e. multi-year periods of unusually high or low water levels that appear in both the 
reconstructed remotely sensed datasets and model simulations (though sometimes only in the 
annually-based models). The fact that for Group 1 sites fitting the VIC soil moistures model, the 
cool season precipitation model was a roughly equivalent fit is not surprising, since soil moisture 
dynamics are an integrator of cool season precipitation. In essence they are equally good 
predictors. However, for Group 2 sites observed variability was beyond that captured by 
simulated soil moisture dynamics on which the daily-based regression model was developed. In 
that case, the annually-based cool season precipitation model was a substantially better fit than 
the daily-based multivariate regression model. For Group 2 wetlands, it is hard to say that 
climate is the major driver of wetland dynamics (e.g. in cases where the variability from VIC is 
very small compared to the broader wetland pattern of behavior). As with Group 1, an obvious 
step is to see whether any on-the-ground features are clearly associated with the distinction 
between Group 1 and 2 (or others) that suggest a mechanistic difference underlying their 
categorization and behaviors. For example, are the sites that appear to be most sensitive to cool 
season precipitation potholes where the soil does not transmit water well? These would represent 
a different kind of reservoir than that modeled by VIC soil moisture, and may be less sensitive 
overall to temperature variability as a result. Overall what is different about these places? 

 The key questions that these observations generate relate to the mechanisms underlying 
hydrologic patterns. In this case we can use the Groups to generate hypotheses. For example, 
how do more complex wetland dynamics relate to local features? Under which soil, geographic, 
and other conditions is the VIC model of soil moisture dynamics sufficient to capture wetland 
dynamics? Overall, in the case of the Columbia Plateau wetlands, there is not a clear geographic 
signal among wetland types and groups. This suggests that instead something about the 
microcharacteristics of the wetlands are making them behave differently as opposed to regionally 
varying factors. Their differences could, for example, relate to a range of local variables 
including the depth and drainage characteristics of soils, aquifer structure and complexity, 
underlying geology, or elevation and the possible role of snow.  

In summary, our four groups suggest the following lines of exploration. First, in which 
cases (what kinds of wetlands, landscape features, etc) are hydrologic dynamics driven by 
climate variability that is captured by the VIC model? Alternatively, in which cases (what kinds 
of wetlands, landscape features, etc) are dynamics driven primarily by precipitation? For 
example, which wetlands are closed systems with stream inputs, or what are their connections to 
groundwater flows or seeps? As more localized information becomes available, our “Groups” 
may remain intact or may split into further distinctions. The interesting question is where the 
breakpoint lies in having detailed enough information to adequately model and capture historical 
dynamics with the VIC while maintaining the benefits of the VIC as a macroscale regional 
model, and understanding its applications and limits.  

One expected limitation of the VIC is in cases of wetlands, such as those proposed for 
Group 3, which appear to have substantial human influence. In these cases, the lack of fit to the 
VIC, along with observed patterns in the remotely sensed dataset independently, illuminates 
questions about 1) what is happening on the ground and 2) whether local knowledge can help 
discern those patterns. For example, in sites that exhibit anomalous patterns or poor fit to the 



VIC model, are there particular hydrologic signatures associated with increased rates of well 
construction, groundwater mining, diversions, or other human activities?  

The limitations of our study in linking patterns to mechanisms highlights the need to 
better characterize a subset of the actual wetlands to support the next step of analyses. Which of 
these factors are most important will also determine the degree to which wetlands are likely to 
shift with climate.  
 
Climate impacts on wetlands 

Given the limitations of the VIC simulations in recreating historical hydrologic dynamics 
in the Columbia Plateau wetlands, climate impacts are a challenge to evaluate overall. One 
observation is that in general in the Group 1 and 2 wetlands (in which we have more confidence 
in the models), median water levels do not substantially change. This could mean that wetlands 
have a better groundwater connection, i.e. this is the reason they exist at all, and also makes them 
less sensitive to climate impacts. (This assumes that groundwater is less subject to climate 
impacts, on which there is debate.) Because groundwater flows are not explicitly included in the 
VIC model, these connections make it hard to characterize groundwater-fed sites with the VIC. 
However, there may be ways to recognize sites strongly linked to groundwater using the VIC 
model, based on model behavior or patterns of divergence from VIC predictions, so this is a 
potential area of future exploration.  

Overall, what we seek to understand in terms of modeling climate impacts to wetlands 
with the VIC model is where we can or cannot ignore certain hydrologic drivers for certain kinds 
of wetlands. What we are looking for ultimately are classifications that relate to climate change 
sensitivity. (There is an analog to systems with or without snow in West side (montane and 
lowlands) sites; knowing where this boundary is determines in large part which wetlands will be 
much more sensitive to temperature.) One challenge currently in the case of the Columbia 
Plateau is that all of our variables are correlated with each other, so we do not have an 
independent predictor of wetland behavior.  

 
 
4.4 Ecological Modeling  
Montane Wetlands 

In our study we focused on three pond-breeding amphibians: Rana cascadae, Ambystoma 
macrodactylum, and Ambystoma gracile. In the preliminary analyses presented here, across all 
species either hydroperiod or in one case pond shape (i.e. first PCA axis that differentiated deep, 
large from shallow, smaller wetlands) was among the highest variable importance in each of the 
six analyses (each species, analyzed by breeding evidence and adult presence). Either 
hydroperiod or the pond shape PCA axis was a significant parameter coefficient (with the 
exception of A. gracile, where positive observations were so skewed towards deeper pond types 
that the statistics failed).  

The specific relationships of each species to hydroperiod differed, however. Rana 
cascadae breeding was strongly associated with intermediate and perennial wetlands. This likely 
reflects the beneficial growth conditions found there (warmer ponds allow faster developmental 
rates), as long as they do not dry. These sites are also unlikely to be occupied by fish, as 
discussed below. Adult habitat use for Rana cascadae was most strongly associated with 
intermediate ponds, but was also significantly greater in permanent ponds (compared to 
ephemeral sites). There was a positive but not significant association with perennial ponds for 



adults. This split distribution is likely to be capturing multiple uses for these different kinds of 
sites. For example, early season use of adult R. cascadae for breeding, and later summer and fall 
use of permanent ponds for foraging. Ambystoma macrodactylum likewise predominantly used 
intermediate and perennial ponds for breeding. However adult A. macrodactylum were more 
strongly associated with deeper, less shallow ponds. Ambystoma gracile showed a different 
pattern, with both breeding and adult presence strongly associated with permanent, and to a 
lesser degree perennial, pond types. 

Despite having observations of fish in only 9 out of the 168 sites surveyed, fish also 
appeared in all of the top models, often with a statistically significant negative effect, and with a 
negative effect in all cases. These findings – the importance of hydrologically-related features 
and of fish – support our expectations that these two factors would be of importance for 
amphibians. Other important factors varied by species and life stage. The common inclusion of 
the percentage of wooded perimeter in many of the top models may reflect on-the-ground 
conditions and microclimates in the mountains more accurately than a courser measure like 
elevation (which also appeared in several top models). Therefore it was not a surprise that 
species such as Rana cascadae and Ambystoma gracile were associated with more heavily 
forested ponds, while Ambystoma macrodactylum, known to be the highest elevation species of 
the three that may be found above treeline, had a negative relationship with forest cover.  

One of the questions that may be answered by future occupancy analysis of this dataset is 
the degree to which our findings may be improved with estimates of detection. Particularly for 
species such as A. macrodactylum that have larvae that are known to be more active at night, and 
adults that are relatively small and cryptic compared to the other two species, this assessment 
will be important. We might expect some associations to strengthen based on incorporation of 
detection rates. For example, A. macrodactylum are associated with higher elevation ponds with 
cobble in the substrate. The same feature (cobble) also acts as refugia in which larvae can hide to 
avoid detection. Next steps are to further explore these data with specific hypotheses that 
incorporate interactions among variables, and to investigate the effect of detection probabilities 
on estimates of occupancy associated with different habitat types. 
 
4.5. Synthesis  
 
Sensitivity: The differences in breeding and adult foraging habitat use and life history 
requirements among our three focal species translate into different levels of climate-related risk 
of habitat loss that most clearly could affect breeding and recruitment. Rana cascadae is of 
greatest concern, as a montane obligate species not found at lower elevations, which heavily 
relies for recruitment on intermediate and perennial ponds that are at highest risk of climate 
impacts. Ambystoma macrodactylum also appear to be at substantial risk of losing breeding 
habitat due to increased pond drying rates in montane and alpine regions. While in a general 
sense A. macrodactylum is buffered somewhat by its broader range (found from sea level up to 
alpine regions), the species is doubly at risk of negative climate impacts in montane regions due 
to 1) its reliance on intermediate and perennial ponds for breeding and 2) its requirement of 
multiple consecutive years of water for larvae to complete metamorphosis at higher elevations. 
Therefore while Cascades frogs are likely to be most affected by reduced times to pond drying, 
risk to long-toed salamanders is amplified by the projected increase in the inter-annual frequency 
of pond drying. Ambystoma gracile appear to be at lowest risk of direct negative impacts on 
breeding habitat, due to their reliance on longer hydroperiod kinds of ponds that according to our 



analysis are less sensitive to climate change. However, while Ambystoma gracile appear likely to 
experience less direct habitat loss, shifts in pond conditions or the frequency of drying in 
perennial sites may have other life history impacts, such as shifting the relative frequency of 
metamorphosis versus paedomorphosis. This possibility generates additional interesting 
questions about how survival rates vary in alpine regions among the two adult forms, whether 
those survival rates may be affected by climate change, and whether shifts in the frequency of 
adult morphs could have implications for demographic rates and population viability under 
climate change. Likewise, while our analysis does not address impacts of climate change beyond 
effects on breeding habitat, we would anticipate a broader range of demographic effects to either 
exacerbate or help compensate for recruitment losses. 
 
Exposure: Overall, we found considerable and in some cases severe potential impacts of climate 
change on montane wetlands in all three National Parks, with the magnitude of impacts varying 
in space across each landscape with factors such as mountain topography and other key drivers 
of regional climate variation. Our assessment provides a first step in evaluating the exposure of 
wetlands and montane species to climate change, with more advances needed. Because the 
wetland distribution presented here is based on the National Wetland Inventory (NWI), cross-
walked to our pond classifications, as noted above we are likely under-representing perennial 
ponds here since this category does not map well to the NWI classifications. Also, as the results 
of our remote-sensing study and mapping of wetlands in Mount Rainier National Park show 
(Section 3.1), small wetlands of any hydrologic type are substantially underrepresented by the 
NWI, at least for the montane regions we have studied. Therefore it is safe to assume that our 
assessment underestimates the number of small ephemeral, intermediate, and perennial wetlands 
in our three focal landscapes. The degree to which these errors of omission differ across those 
landscapes is an open one that we now have the tools to answer were LiDAR coverage, for 
example, to become available for North Cascades and Olympic National Parks. Nevertheless, the 
NWI is a good starting point to begin to assess areas of highest risk to amphibians based on the 
combination of wetland types and the degree of risk associated with climate change. As LiDAR 
becomes available for North Cascades and Olympic National Parks, the methods used in Mount 
Rainier may be extended there to develop better estimates.  
 
Adaptive capacity: A promising approach to building resilience in montane wetland ecosystems 
is the possibility of targeting removal of introduced fish – known to have strong negative effects 
on a suite on native montane species – to regions where removals could restore habitat that is 
otherwise not available to amphibians and other native species affected by fish. The dominant 
effect of fish in our results, despite the very small sample of sites with fish in our surveys (~5%) 
supports the preponderance of evidence that introduced fish harm native montane ecosystems. 
Likewise, the demonstrated success of fish removals, and rapid unassisted recolonization by 
native amphibians and invertebrates shows the real potential of this approach for getting ahead of 
negative climate impacts (Ryan et al. 2014). The resources provided here can help Park 
managers and other land managers identify, for example, priority regions where habitat loss and 
fish presence are projected to most severely interact. Our team is working on further assessment 
of this as well. 

A key area of uncertainty is in the biological capacity of amphibians to respond to 
climate impacts. Amphibians as a group are highly adapted to variable conditions, but little is 
known about the plasticity of alpine amphibians in response to climate impacts. For example, for 



our focal species, there are zero published studies of responses of different life history stages to 
climate-related impacts. A primary question in terms of breeding success is whether faster 
tadpole or larval development in ponds with increased water temperatures could compensate for 
faster pond drying rates. Observations of stranded tadpoles in dried ponds suggest that selective 
pressure for faster development is there in some years but plasticity is currently insufficient in 
many cases. For example, 2012 and 2013 were climate analog years in terms of the degree of 
drying in montane and alpine regions of the Pacific Northwest, and we observed substantial 
mortality of tadpoles due to pond drying in both years. In wetlands not at risk of drying entirely, 
ecological effects may also depend on how thermal conditions in ponds change as the climate 
warms and water levels drop (O’Regan et al., 2013; Ryan et al., 2014; Tarr & Babbitt, 2008). 
Overall, the potentially complex demographic effects of climate change on different life history 
stages leaves ample room for research and many uncertainties (Windler and Schindler 2004; 
Amburgey et al., 2012; Duarte et al. 2012; Gerick et al. 2014). Therefore proactive management 
approaches to building resilience (aka adaptive capacity) provide some insurance in the face of 
those uncertainties.  

For amphibians in particular, already known to be in declines in many montane regions, 
climate impacts are likely to interact with non-climate threats such as disease, pollution, and the 
presence of introduced fish (Ryan et al., 2014; Adams et al., 2013; Piovia-Scott et al., 2011; 
Knapp et al., 2007; Davidson, 2004). Amphibians and invertebrates are also important prey for 
many montane species, so population declines in these assemblages could propagate up food 
webs, negatively affecting the birds, non-avian reptiles, and mammals that rely on them as prey 
(Epanchin et al., 2010; Polis & Strong, 1996). Overall, species’ exposure will depend on what 
kinds of wetland habitat they use, the current distribution of wetland types across landscapes, and 
the degree of change in spatial and temporal hydrologic patterns under future climates (Ryan et 
al., 2014). 

Beyond our three focal species, the broad range of ecological roles played by wetlands 
means that altered hydrology across whole landscapes will reverberate in many ways, ranging 
from shifts in wildlife habitat to water storage to patterns of nutrient transfer and transformation. 
Patterns of soil inundation, for example, determine rates of carbon sequestration and release, 
nitrogen transformations, and other nutrient cycles. Likewise, changes in temporal pulses of peak 
water affect local pond metabolism and primary productivity, the structure of plant communities, 
and patterns of wildlife connectivity (Mitsch & Gosselink, 2007). Montane wetlands serve as 
critical habitat for a wide variety of species, many of which are adapted and sensitive to 
particular hydrologic regimes that are projected to shift under future climates. Therefore the 
hydrologic shifts evident in future projections of wetland dynamics imply widespread changes in 
the many ecological roles served by wetlands.  
 
 
5. Conclusions and Recommendations  
 
Summary of Major Conclusions  
 
Remote Sensing  

• In montane sites, current wetland maps have high errors of omission for small ponds and 
wetlands in particular. The methods described here substantially improve wetland 



mapping accuracy (to >90%, up from <65%) and also show promise in capacity to 
remotely classify pond hydrologic features such as hydroperiod and drying rate.  

• In the Columbia Plateau (with direct applications to other semi-arid and arid regions), 
remote sensing approaches are a game-changing solution to the persistent problem of 
wetland data deficiency. They can be used to generate retrospective data that is rare, 
critically needed, and otherwise lost in time. The range of potential applications of these 
methods and datasets is extremely compelling, including research, management, and 
conservation, restoration, and policy assessment efforts due to their power in 
reconstructing historical hydrologic patterns of wetlands variation and change over time, 
improving statistics, and calibrating models of climate impacts. 
 

Focal Field Studies 
• On-the-ground observations remain key to linking sophisticated technological modeling 

approaches to a core understanding of hydrologic mechanisms and their associated 
influences on species and ecosystems. This work is time consuming but irreplaceable in 
the insight it yields and capacity to bridge larger-scale studies to dynamics at local scales. 
 

Climate-hydrologic Modeling 
• The methods developed here represent a substantial advance in our capacity to model 

climate impacts to wetlands. Our work represents the first application of a macroscale 
model to address climate impacts on wetlands in particular across broad geographic 
regions. The VIC’s capacity to generate projections at two scales – the individual pond 
and the region – underlies its strength as a modeling tool to support research and 
management. 

• The VIC model shows substantial promise as a means of reconstructing historical 
hydrologic data, as an extension of the remote sensing methods above, and to model 
future climate impacts. Our relatively robust results, particularly in montane wetlands, 
contradict the assumption that wetland dynamics are by definition too complex to model. 
Overall, the models presented here offer a first step in beginning to fill the gap in 
scientific resources for wetland conservation, vulnerability assessment, and climate 
adaptation planning at both local and regional scales. 

• The VIC approach works well in some regions and wetland types, and not in others.  
• For montane wetlands, our approach demonstrates a promising first step in relating 

simulated macro-scale hydrologic variables to observed wetland hydrologic behavior, and 
projecting the impacts of climate variability and change on montane wetlands in 
Washington, Oregon, and California. This shows that in many cases wetlands only exist 
in response to the current climate (e.g. ephemeral and many intermediate wetlands), thus 
if as the climate changes some of these wetlands will be lost or will transition to shorter-
hydroperiod types. In montane sites, the primary limitation of the VIC was in capturing 
interannual variation. This is likely due to data paucity in regions with little historical 
study of wetlands, and too much cloud cover to apply the remote sensing methods 
feasible for more arid regions.   

• In Columbia Plateau sites, the central challenge is a lack of on-the-ground information to 
associate VIC patterns with specific hydrologic mechanisms. Unlike montane sites in 
which we can count on climate being a consistent driver of hydrologic shifts, the climate 
of the Columbia Plateau is fairly uniform across the region, yet wetlands show a lot of 



variability. To understand the hydrology of these sites and how to best apply the VIC 
model approach, we need further exploration and collaboration to move analyses to the 
next step that accounts for local and regional variations in features affecting hydrology 
and the degree of human impacts.  

•  The value of VIC is that it has a climate variability signal in it, so can point to fact that 
some wetlands are more or less driven by climate. From these observations, we can 
develop hypotheses to test further. In this sense, one of the values of the VIC, beyond its 
capacity to in some cases generate robust historical hindcasts and future projections, is 
that it generates questions about wetland dynamics to motivate more in-depth studies.  

• With remotely sensed datasets now available for some regions, sample size of wetland 
observations is no longer an issue, and instead the issue is whether VIC models fit or not. 
This allows us to look in more detail at how models do or do not capture the systems 
under study, and to examine what are the robust relationships with climate variables.  

 
Ecological Modeling 

• Ecological models show that three focal species of amphibians that use montane and 
alpine ponds and wetlands have differential reliance on the four wetland hydrologic 
classes, and that these differences relate to their vulnerability to climate impacts.  

• At highest risk, based on the sensitivity of their core habitat to climate-induced drying, is 
the Cascades frog, Rana cascadae. However, the Cascades frog’s capacity to use a range 
of pond classes in the absence of fish suggests opportunities for resilience if enough fish-
free habitat remains or is made available through management actions. 

• Long-toed salamanders, Ambystoma macrodactylum, are also at elevated risk of negative 
effects of climate change on breeding habitat due to their reliance on intermediate and 
perennial ponds, and additionally their life history requirement of multiple years of 
consecutive pond inundation to successfully metamorphose in higher elevation 
environments. 

• Northwestern salamanders, Ambystoma gracile, are associated with generally less at-risk 
pond types (perennial and permanent ponds). However, their life history vulnerability, i.e. 
need for ponds that retain water for multiple consecutive years in order for larvae to 
complete metamorphosis, means that they will also experience elevated risk in regions 
with more severe climate impacts and in particular transitions from perennial or 
permanent to intermediate pond habitats.  

 
Synthesis 

• The combination of our four lines of research link observations on the ground that a core 
assemblage of wetland-reliant species (pond-breeding amphibians) are currently most 
reliant on the kinds of wetlands that are both a) the most commonly omitted from existing 
wetland maps and b) the most vulnerable to climate-induced hydrologic changes over the 
coming decades. Fortunately opportunities do exist to ameliorate impacts through 
methods with proven success such as fish removals, and these can be applied to existing 
management plans such as North Cascades High Lakes Fisheries Management Plan. 

• Our synthetic approach also suggests that climate-related risk varies considerably across 
and among the three focal National Parks – Mount Rainier, North Cascades, and Olympic 
National Parks – thus management efforts and future research and monitoring may be 
targeted accordingly and applied if desired to an adaptive management framework. 



 
Challenges  
 
Remote Sensing 
One of the challenges that remains is scaling up the remote sensing algorithms to map large 
regions. Because of the high resolution of datasets greater computational power is necessary to 
process large volumes of data across regions. An additional challenge for mapping and 
evaluating montane wetlands is the lack of LiDAR data for many regions. LiDAR data would in 
our case allow us to apply the algorithms developed for mapping wetlands in Mount Rainier to 
North Cascades and Olympic National Parks, which would allow us address many of the 
questions raised above. For example, our assessment of the proportion of wetland habitat loss or 
conversion across all three National Parks is constrained by the knowledge that our current maps 
are insufficient, especially for the small ponds and wetlands that are our focus. This also affects 
managers’ capacity to accurately target priority regions for fish removal. Finally, a persistent 
challenge is the lack of field data covering a wide variety of wetland types to test out the ability 
of remote sensing to map wetlands and their hydrologic regime. These data would be particularly 
helpful in understanding some of the patterns observed, for example, in our VIC model analyses 
of the Columbia Plateau. 
 
Field Studies 
The central challenge in wetland science is a dearth of historical data and current monitoring. 
While our methods generate several means of reconstructing historical data, a broader system of 
wetlands monitoring is sorely needed to be able to develop a more rigorous, scientifically based 
understanding of wetland dynamics and their ecological implications. 
 
Climate-Hydrologic Modeling 
Data limitations again are the key constraint for climate-hydrologic modeling of wetlands. 
Because our methods in montane regions were applied mostly in wetlands with at most a few 
years of observed hydrologic data (often only a single year), extending these approaches to 
confirm the robustness of our approach over different ecoregions, additional wetland types, and 
across a longer time series are essential next steps. These models also need to be coupled to 
better on-the-ground or remote sensing-derived data on wetland occurrence and type so that the 
most useful predictions about historical and/or future wetland changes can be made. In complex 
regions that include substantial human impacts such as the Columbia Plateau, on-the-ground data 
on local soil and landscape features and anthropogenic drivers of hydrologic change are essential 
for understanding patterns derived from remotely sensed datasets and VIC models. 
 
Ecological Modeling & Synthesis 
The questionable robustness of our VIC simulations for a majority of Columbia Plateau 
wetlands, coupled with limited ecological data, meant that we had insufficient data resources to 
conduct a rigorous preliminary assessment of climate impacts to Columbia Plateau amphibians. 
We hope to remedy this through the next steps of our research. For the montane assessment, we 
mention five species in our proposal. Observations of Taricha granulosa and Bufo boreas were 
so limited that we were not able to conduct rigorous statistical analyses on these species. We are 
in the process of further analyzing amphibian data using a variety of additional statistical 
techniques, including but not limited to occupancy modeling to extend the use of this dataset. 



Key Learning & Next Steps 
Overall we are happy with the progress made through this grant. In terms of things we would do 
differently, there were no substantial misfires, but are likely opportunities to augment our 
datasets and capacity to evaluate them through new collaborations with researchers and 
managers studying wetlands on the ground. While we have invested substantial time in seeking 
out these data resources and relationships, we nonetheless hope to further develop them in the 
future, with regard to both targeted applications of our scientific resources and data through 
which to improve our ability to interpret our findings (e.g. VIC groups) and tie them to local 
dynamics on the ground. 
 
Remote Sensing 
Key next steps are to extend the remote sensing methods developed here to broader geographic 
regions and a broader range of wetland types, and to further evolve the tools for remotely 
classifying wetlands in more complex landscapes such as our montane sites. 
 
Climate-Hydrologic Modeling 
Next steps to explore using the VIC approach are described above. Additional next steps are to 
experiment with other modeling approaches in addition to the VIC, which offer a range of model 
complexity from microtopography and groundwater interactions to simple regression models. 
Members of our group are currently developing a range of products that can be projected forward 
such as simple groundwater models coupled to VIC recharge. In this case, the VIC models 
evaporation, precipitation, infiltration, etc, which can then be used to as groundwater recharge 
inputs for a simple groundwater model that produces a steady state groundwater field over a 
large area. This hybrid approach would overcome some of the limitations of the VIC while also 
maintaining its capacity to model physically-based wetland dynamics over a much broader 
geographic region than is possible with more computationally and data-intensive integrated 
groundwater-surface water (IGWSW) modeling approaches. Alternatively, where IGWSW 
models are available, VIC could be used to explore which elements of the more sophisticated 
model are captured by simpler models such as the VIC. 
 
Ecological Modeling & Synthesis 
Tying the remote sensing products developed here to ecological data representing a variety of 
taxonomic groups (e.g. waterfowl, amphibians, invertebrates) is a key next step that would 
support a broad range of restoration, conservation, and management efforts linking private 
landowners; state, tribal, and federal land managers; municipal and state water quality, flood 
control, pollution control, etc efforts; and conservation, restoration, and climate adaptation 
planning. Additionally, extending the scope of our research to include additional scales of 
ecological function served by wetlands (such as nutrient fluxes, carbon sequestration, etc) and 
how these may be affected by climate change would be exciting. Building on our extensive 
existing datasets, we are also in a position to generate and test hypotheses regarding the 
metapopulation and metacommunity dynamics of our focal species that would be of interest both 
to managers concerned with population viability and to questions of basic science. 
 
 
 
 



6. Management Applications and Products  
 
Uses  
All of our products (wetland maps, reconstructed and empirical datasets, future climate impacts 
projections) can be used by managers to evaluate historical changes in wetland hydrology and 
potential future changes across the range of applications stated above.  
 
Collaborations with Managers and Decision-Makers 
We have worked closely throughout this project with managers and scientists with the National 
Park Service such as Regina Rochefort (North Cascades National Park, Science Advisor), 
Barbara Samora (Mount Rainier National Park, Research Coordinator), Jerome Freilich 
(Olympic National Park, Research Coordinator); various members of the North Cascadia 
Adaptation Partnership; land managers in the Columbia Plateau such as Michael Rule (Turnbull 
Lakes, Wildlife Biologist), Sonia Hall (The Nature Conservancy, Arid Lands Initiative, Arid 
Lands Ecologist); Juli Anderson (Swanson Lakes, Manager)  
 North Cascades National Park is currently using our projections to evaluate their multi-
year plan for fish removals as a part of the Park’s High Lakes Fisheries Management Plan. We 
are in discussions with Michael Rule about an application of our modeling approach to 
management decision making on the Turnbull Lakes Wildlife Refuge. We have also been 
approached by a broad range of potential partners interested in our work in the Columbia Plateau 
in particular from groups such as Ducks Unlimited, The Nature Conservancy, Washington 
Department of Fish and Wildlife, US Bureau of Land Management, Foster Creek Conservation 
District, Environment Canada, Washington State Wetland Monitoring Group, and others.  
 
Outreach 
Over the past two years we have conducted multiple outreach activities including: 

• Pacific Northwest Wetlands Symposium, November 2012 in Seattle, where we brought 
together ~40 wetlands researchers, scientists, and managers in collaboration with 
EcoAdapt to gather feedback on our approaches while they were in development, and 
stimulate discussion and collaboration on wetlands climate adaptation efforts. 

• We hosted a special session titled Climate Adaptation & Pacific Northwest Freshwater 
Wetlands: Strengthening Links between Science and Management at the 2014 Pacific 
Northwest Climate Science Conference in Seattle that included our core team along with 
agency partners Regina Rochefort and Michael Rule. 

• We have also given roughly ten individual presentations at various conferences on this 
work (Pacific Northwest Climate Science Meeting, International Congress for 
Conservation Biology, World Congress of Herpetology, International Workshop on the 
Analysis of Multi-temporal Remote Sensing Images, Society of Wetland Scientists 
Pacific Northwest Chapter, International Conference on Climate Change: Impacts and 
Responses) 

• We gave two management-oriented webinars, one for the North Pacific Landscape 
Conservation Cooperative and another for the US Fish and Wildlife Service on this work. 

• We published one article describing our synthetic approach applied to montane 
amphibians in Frontiers in Ecology and the Environment (Ryan et al. 2014). We have 
two other publications currently in review, one focused on climate-hydrologic modeling 
of montane wetlands (Lee et al. in review at PLoS ONE) and one focused on historical 



reconstructions of wetland hydrology (Halabisky et al. in review at Remote Sensing of 
Environment). We have three more manuscripts currently in preparation, on methods for 
mapping montane wetlands using LiDAR (Halabisky et al. in prep), a synthesis of our 
approaches for amphibian vulnerability assessment in Mount Rainier, North Cascades, 
and Olympic National Parks (Ryan et al. in prep), and a synthesis of remote sensing and 
VIC modeling approaches for the Columbia Plateau (Halabisky et al. in prep). Portions of 
the text above are taken from our manuscripts in preparation. 

• We are in frequent contact with a wide range of land managers, fellow academic and 
government researchers, and conservation groups regarding our work and its applications. 
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Appendix A. OBIA ruleset 
 
Customized Features: 
    2006-2009: [2006ImageBrightness]-[2009ImageBrightness] 
    2006ImageBrightness: ([Mean NAIP2006_Red]+[Mean NAIP2006_Green]+[Mean 
NAIP2006_Blue])/3 
    2009ImageBrightness: ([Mean NAIP2009_Blue]+[Mean NAIP2009_Green]+[Mean 
NAIP2009_Infrared]+[Mean NAIP2009_Red])/4 
    Canopy Height: [Mean hh]-[Mean be] 
    NDVI: ([Mean NAIP2009_Infrared]-[Mean NAIP2009_Red])/([Mean 
NAIP2009_Infrared]+[Mean NAIP2009_Red]) 
    NDWI2009: ([Mean NAIP2009_Green]-[Mean NAIP2009_Infrared])/([Mean 
NAIP2009_Green]+[Mean NAIP2009_Infrared]) 
    Perimeter to Area: [Border length]/[Area] 
    Redness2006: [Mean NAIP2006_Red]/([Mean NAIP2006_Blue]+[Mean 
NAIP2006_Green]+[Mean NAIP2006_Red]) 
    Redness2009: [Mean NAIP2009_Red]/([Mean NAIP2009_Blue]+[Mean 
NAIP2009_Green]+[Mean NAIP2009_Infrared]+[Mean NAIP2009_Red]) 
 
Process: Main: 
    do 
         Classify Roads, Streams, Canopy  - LiDAR 
              chessboard segmentation: chess board: 1 creating 'New Level' 
              assign class: unclassified with Mean Slope <= 1e-005  and Area >= 1000 ha at  New 
Level: background 
              assign class: with Id: Roads = 0  at  New Level: Road 
              merge region: Road at  New Level: merge region 
              assign class: unclassified with Mean Flow >= 2500  at  New Level: Stream 
              grow region: loop: Stream with Canopy Height <= 1.75  at  New Level: <- unclassified 
Mean Intensity_1 <= 55 
         Classify Ponds - LiDAR 
              assign class: Stream with Mean Slope <= 3  at  New Level: Pond 
              assign class: Stream with Mean Depth >= 0.1  and Mean Slope <= 4.5  at  New Level: 
Pond 
              merge region: Pond at  New Level: merge region 
              assign class: Pond with Area <= 15 Pxl at  New Level: Stream 
              merge region: unclassified at  New Level: merge region 
              multiresolution segmentation: unclassified at  New Level: 10 [shape:0.1 compct.:0.5] 
              assign class: unclassified with Canopy Height >= 2.25  at  New Level: canopy 
              merge region: canopy at  New Level: merge region 
              assign class: unclassified with Mean Intensity_1 <= 60  and Mean Slope <= 5  at  New 
Level: Pond 
              assign class: unclassified with Mean Intensity_1 <= 60  and Mean Depth >= 0.1  at  
New Level: Pond 
              merge region: Pond at  New Level: merge region 



              assign class: unclassified with Mean Intensity_1 <= 60  and Mean Slope <= 9  at  New 
Level: PotentialPond 
              assign class: PotentialPond with Rel. border to Pond >= 0.1  at  New Level: Pond 
              find enclosed by class: canopy, Stream, Water, unclassified at  New Level: enclosed by 
Pond: Pond, Water + 
              merge region: Pond at  New Level: merge region 
              assign class: 2x: Stream with Rel. border to Pond >= 0.1  at  New Level: Pond 
              merge region: Pond at  New Level: merge region 
              assign class: Pond with Area <= 5 Pxl at  New Level: unclassified 
         Find Ephemeral Wetlands - LiDAR 
              assign class: unclassified with Mean Depth > 0.1  and Mean Slope <= 5  at  New Level: 
Temporary Wetland 
              merge region: Temporary Wetland at  New Level: merge region 
              assign class: Temporary Wetland, Water with Area <= 10 Pxl at  New Level: 
unclassified 
              assign class: Temporary Wetland with Rel. border to Pond > 0.01  at  New Level: Pond 
         Find Ephemeral Wetlands - LiDAR2 
              assign class: unclassified with Mean Slope <= 3.5  and Max. pixel value CTI >= 14  at  
New Level: Emergent Wetland 
              assign class: unclassified with Mean Slope <= 3  and Max. pixel value CTI >= 9.5  at  
New Level: Emergent Wetland 
              assign class: unclassified with Mean Slope <= 3.5  and Mean Depth > 0  at  New Level: 
Emergent Wetland 
              assign class: unclassified with Mean Slope <= 2.5  at  New Level: Emergent Wetland 
              assign class: loop: Emergent Wetland with Rel. border to Emergent Vegetation > 0  at  
New Level: Emergent Vegetation 
              merge region: Emergent Vegetation at  New Level: merge region 
              merge region: Emergent Wetland at  New Level: merge region 
              assign class: Emergent Wetland with Area <= 150 m² and Mean Slope > 1.5  at  New 
Level: unclassified 
              assign class: Emergent Wetland with Border to Pond > 1 Pxl at  New Level: unclassified 
         Find Emergent Veg surrounding ponds - LiDAR 
              merge region: Emergent Wetland, unclassified at  New Level: merge region 
              chessboard segmentation: unclassified at  New Level: chess board: 1 
              assign class: loop: unclassified with Mean Depth > 0.01  and Border to Pond >= 1 Pxl at  
New Level: Emergent Vegetation 
              assign class: loop: unclassified with Mean Depth > 0.01  and Border to Emergent 
Vegetation >= 1 Pxl at  New Level: Emergent Vegetation 
              assign class: loop: unclassified with Mean Slope <= 2  and Border to Pond >= 1 Pxl at  
New Level: Emergent Vegetation 
              assign class: loop: unclassified with Mean Slope <= 2  and Border to Emergent 
Vegetation >= 1 Pxl at  New Level: Emergent Vegetation 
              merge region: Emergent Vegetation at  New Level: merge region 
              assign class: Emergent Vegetation with Rel. border to Pond >= 0.8  at  New Level: Pond 
         Cleanup - LiDAR 



              assign class: unclassified with Rel. border to Emergent Vegetation >= 0.58  at  New 
Level: Emergent Vegetation 
              assign class: Emergent Wetland with Distance to Emergent Vegetation <= 50 Pxl at  
New Level: Emergent Vegetation 
              assign class: Pond with Rel. border to Stream >= 0.2  and Area <= 50 Pxl at  New 
Level: Stream 
         Merge Polygons - LiDAR 
              merge region: Emergent Vegetation at  New Level: merge region 
              merge region: Ephemeral Pond at  New Level: merge region 
              merge region: Pond at  New Level: merge region 
              merge region: Water at  New Level: merge region 
              merge region: Wet Meadow at  New Level: merge region 
              merge region: Temporary Wetland, Wet Meadow at  New Level: merge region 
              merge region: Wetland at  New Level: merge region 
              merge region: Stream at  New Level: merge region 
         Cleanup - LiDAR 
              assign class: steep, Tree Canopy, Vegetation at  New Level: unclassified 
              assign class: Ponds, Pond with Canopy Height >= 2  at  New Level: unclassified 
              assign class: Emergent Vegetation, PotentialPond, Stream, unclassified with Area <= 6 
Pxl and Rel. border to Pond >= 0.1  at  New Level: Pond 
              assign class: 3x: Emergent Vegetation, PotentialPond, Stream, unclassified with Rel. 
border to Pond >= 0.7  and Rel. border to Pond >= 0.1  at  New Level: Pond 
              assign class: 3x: Emergent Vegetation, Stream, unclassified with Rel. border to Pond >= 
0.7  and Rel. border to Pond >= 0.1  at  New Level: Pond 
              assign class: Stream, unclassified with Area <= 10 Pxl and Rel. border to Emergent 
Vegetation >= 0.1  at  New Level: Emergent Vegetation 
              merge region: Pond at  New Level: merge region 
              merge region: Stream at  New Level: merge region 
              merge region: Emergent Vegetation at  New Level: merge region 
              assign class: PotentialPond with Area <= 20 Pxl at  New Level: unclassified 
              assign class: Pond with Mean Intensity_1 >= 100  and Area <= 50 Pxl at  New Level: 
Temporary Wetland 
              assign class: Pond with Mean Flow > 40000  at  New Level: Stream 
         Wetland Complex 
              copy image object level: Emergent Vegetation, Emergent Wetland, Pond, Stream at  
New Level: copy creating 'complex' above 
              chessboard segmentation: Emergent Vegetation, Pond, Stream at  complex: chess board: 
1 
              assign class: Emergent Vegetation, Emergent Wetland, Pond, Stream with Mean Flow 
>= 5000  at  complex: Stream 
              assign class: Stream with Border to Stream >= 1 Pxl at  complex: complex 
              merge region: complex at  complex: merge region 
              assign class: Emergent Vegetation, Emergent Wetland, Pond at  complex: complex 
              merge region: complex at  complex: merge region 
              assign class: Stream with Rel. border to complex >= 0.25  at  complex: complex 
              merge region: complex at  complex: merge region 



         Identify Ponded Streams - Complex 
              assign class: complex with Mean Flow >= 5000  and Area <= 5000 m² at  complex: 
Stream 
              assign class: Stream with Existence of sub objects Pond (1) > 0  at  complex: 
PondedStream 
              assign class: PondedStream with Area > 100 m² and Mean Slope > 4  at  complex: 
Stream 
         Merge Polygons 
              do 
              merge region: loop: Emergent Vegetation at  New Level: merge region 
              merge region: loop: Pond at  New Level: merge region 
              merge region: Stream at  New Level: merge region 
         Grow Ponds - Imagery 
              chessboard segmentation: Emergent Vegetation, PotentialPond, unclassified at  New 
Level: chess board: 1 
              grow region: loop: Pond at  New Level: <- Emergent Vegetation 2009ImageBrightness 
<= 90 
              grow region: loop: Pond at  New Level: <- Emergent Vegetation 2006ImageBrightness 
<= 100 
              assign class: 4x: with Rel. border to Pond >= 0.3  and NDWI2009 >= 0.5  at  New 
Level: Pond 
              merge region: Pond at  New Level: merge region 
         Multi image hydrology 
              Hydrology 
                   merge region: Pond at  New Level: merge region 
                   assign class: 4x: Stream with Rel. border to Pond > 0.25  at  New Level: Pond 
                   merge region: Pond at  New Level: merge region 
                   merge region: Emergent Vegetation at  New Level: merge region 
              Hydrology during 2009 
                   copy image object level: Pond at  New Level: copy creating '2009' below 
                   chessboard segmentation: Pond at  2009: chess board: 1 
                   assign class: Pond with 2009ImageBrightness >= 190  at  2009: 2009_snow 
                   assign class: Pond with Mean NAIP2009_Infrared > 90  at  2009: Dry2009 
                   assign class: Pond with Mean NAIP2009_Infrared > 27  at  2009: Shallow2009 
                   assign class: Pond with Mean NAIP2009_Infrared <= 27  at  2009: Deep2009 
                   assign class: with 2009ImageBrightness >= 190  at  2009: 2009_snow 
              Hydrology during 2008 
                   copy image object level: Pond at  New Level: copy creating '2008' below 
                   chessboard segmentation: Pond, 2008Ponds at  2008: chess board: 1 
                   assign class: Pond with Mean Intensity_1 <= 0  at  2008: zero intensity 
                   assign class: Pond, 2008Ponds with Mean Intensity_1 >= 60  at  2008: Dry2008 
                   assign class: Pond, 2008Ponds with Mean Intensity_1 > 0  at  2008: Shallow2008 
              Hydrology during 2006 
                   copy image object level: Pond at  New Level: copy creating '2006' below 
                   chessboard segmentation: Pond at  2006: chess board: 1 
                   assign class: Pond with Mean NAIP2006_Blue >= 215  at  2006: 2006_snow 



                   assign class: Pond with 2006ImageBrightness >= 125  and 2006ImageBrightness <= 
200  at  2006: Dry2006 
                   assign class: Pond with 2006ImageBrightness >= 100  at  2006: Shallow2006 
                   assign class: Pond with 2006ImageBrightness < 100  at  2006: Deep2006 
         Identify Meadows 
              assign class: unclassified with NDVI > 0  at  New Level: meadow 
              merge region: loop: meadow at  New Level: merge region 
              find enclosed by class: meadow with Area <= 150 m² at  New Level: enclosed by 
canopy, meadow: canopy, meadow + 
              find enclosed by class: canopy with Area <= 150 m² at  New Level: enclosed by 
meadow: meadow + 
              merge region: loop: meadow at  New Level: merge region 
              merge region: loop: canopy at  New Level: merge region 
         Export Preliminary Results 
              export vector layers: Emergent Vegetation, PondedStream, Pond, Stream at  New Level: 
export object shapes to SprayPonds2014k 
              export vector layers: complex, PondedStream2, PondedStream, Stream at  complex: 
export object shapes to Spraycomplex_2014k 
         Mininum Mapping Unit using imagery 
              assign class: Ponds, temp ponds, 2006Ponds, 2009Ponds with Area <= 350 Pxl and 
2006-2009 <= -5  at  New Level: unclassified 
              assign class: DoqqPonds, Ponds, temp ponds, 2006Ponds, 2009Ponds with Area <= 35 
Pxl at  New Level: unclassified 
              assign class: Ponds with Area <= 100 Pxl and Mean Slope >= 10  at  New Level: temp 
ponds 
         Pond Area 
              assign class: Deep2006, Shallow2006 at  2006: 2006Ponds 
              assign class: Deep2008, Dry2008, Shallow2008, zero intensity at  2008: 2008Ponds 
              assign class: 2008Ponds at  2008: Pond 
              assign class: Deep2009, Shallow2009 at  2009: 2009Ponds 
              export vector layers: Emergent Vegetation, Pond at  New Level: export object shapes to 
Spray_pondarea 
         temp code 
              do 
              assign class: Stream with Mean Depth >= 0.1  and Mean Slope <= 2  at  New Level: 
Pond 
              assign class: Stream with Mean Depth >= 0.34  and Mean Slope <= 7  at  New Level: 
Pond 
              assign class: Pond with Area <= 0.002 ha at  New Level: Stream 
              assign class: Water with Area <= 0.003 ha at  New Level: unclassified 
 
 
 
 
 
 



Appendix B. Field sites for hydrologic monitoring. 
 
Table B1. List of wetlands monitored for hydrologic change and used in the climate-hydrologic 
analyses, and their form of monitoring. Under site locations, MORA is Mount Rainier National 
Park, NOCA is North Cascades National Park, and OLYM is Olympic National Park. *Our 
classifications are based on the long-term dynamics of wetlands from the VIC runs. As a result, 
some of our classifications at Mazama Ridge differ from Girdner and Larson’s classification 
from the very dry summer of 1992. 

Site Location Type Name Method Observation Years 

Mazama Ridge, MORA, WA Perennial Far 2 (Noname) * measurement 2 years (1992, 2012) 

Mazama Ridge, MORA, WA Perennial High A (LZ16) * measurement 2 years (1992, 2012) 

Mazama Ridge, MORA, WA Perennial High G (LZ18) * measurement 2 years (1992, 2012) 

Mazama Ridge, MORA, WA Perennial High D (LZ14)  measurement, iButton 2 years (1992, 2012) 

Mazama Ridge, MORA, WA Permanent High B (M16) * measurement 2 years (1992, 2012) 

Mazama Ridge, MORA, WA Permanent High C (LZ15)  measurement 2 years (1992, 2012) 

Mazama Ridge, MORA, WA Permanent Far 1 (LZ19)  measurement 2 years (1992, 2012) 

Mazama Ridge, MORA, WA Permanent Far 3 (LZ17)  measurement, iButton 2 years (1992, 2012) 

Mazama Ridge, MORA, WA Perennial M10 measurement 1 year (1992) 

Mazama Ridge, MORA, WA Permanent LZ12 measurement 1 year (1992) 

Palisades, MORA, WA Permanent Pal1 measurement 1 year (2012) 

Palisades, MORA, WA Permanent Pal2 measurement 1 year (2012) 

Palisades, MORA, WA Ephemeral Pal3 iButton 1 year (2012) 

Palisades, MORA, WA Intermediate Pal5 measurement 1 year (2012) 

Palisades, MORA, WA Perennial Pal6 measurement 1 year (2012) 

Palisades, MORA, WA Permanent Pal8 measurement 1 year (2012) 

Palisades, MORA, WA Intermediate Pal9 measurement 1 year (2012) 

Palisades, MORA, WA Permanent Pal10 measurement 1 year (2012) 

Spray Park, MORA, WA Permanent SprayA measurement 1 year (2012) 

Spray Park, MORA, WA Permanent SprayB measurement 1 year (2012) 

Spray Park, MORA, WA Perennial SprayC iButton 1 year (2012) 

Spray Park, MORA, WA Intermediate SprayD measurement 1 year (2012) 



Spray Park, MORA, WA Ephemeral SprayE iButton 1 year (2012) 

Spray Park, MORA, WA Permanent SprayF measurement 1 year (2012) 

Spray Park, MORA, WA Ephemeral SprayG measurement 1 year (2012) 

Spray Park, MORA, WA Intermediate SprayH measurement 1 year (2012) 

Spray Park, MORA, WA Intermediate SprayI measurement 1 year (2012) 

Spray Park, MORA, WA Permanent SprayJ1 measurement 1 year (2012) 

Spray Park, MORA, WA Intermediate SprayJ2 measurement 1 year (2012) 

Spray Park, MORA, WA Intermediate SprayK measurement 1 year (2012) 

Spray Park, MORA, WA Ephemeral SprayK.A1 measurement 1 year (2012) 

Spray Park, MORA, WA Ephemeral SprayK.A2 measurement 1 year (2012) 

Spray Park, MORA, WA Intermediate SprayK.A3 measurement 1 year (2012) 

Spray Park, MORA, WA Intermediate SprayL measurement 1 year (2012) 

Spray Park, MORA, WA Intermediate SprayM measurement 1 year (2012) 

Spray Park, MORA, WA Ephemeral SprayN measurement 1 year (2012) 

Spray Park, MORA, WA Permanent SprayO measurement 1 year (2012) 

Spray Park, MORA, WA Permanent SprayQ measurement 1 year (2012) 

NOCA, WA Permanent Pyramid iButton 1 year (2012) 

NOCA, WA Permanent Thunder measurement 1 year (2012) 

Deer Lake, OLYM, WA Perennial Deer Camp1 measurement 1 year (2012) 

Deer Lake, OLYM, WA Permanent Deer Camp2 measurement 1 year (2012) 

Deer Lake, OLYM, WA Ephemeral Deer Camp3 measurement 1 year (2012) 

Deer Lake, OLYM, WA Permanent Deer Camp4 measurement 1 year (2012) 

Deer Lake, OLYM, WA Perennial Deer Trail1 measurement 1 year (2012) 

Deer Lake, OLYM, WA Intermediate Deer Trail2 measurement 1 year (2012) 

Deer Lake, OLYM, WA Permanent Deer Meadow1.2 measurement 1 year (2012) 

Deer Lake, OLYM, WA Perennial Deer Meadow3 measurement 1 year (2012) 

Deer Lake, OLYM, WA Ephemeral Deer Meadow4S measurement 1 year (2012) 



Deer Lake, OLYM, WA Ephemeral Deer Meadow5 measurement 1 year (2012) 

Deer Lake, OLYM, WA Permanent Deer Meadow6 measurement 1 year (2012) 

Deer Lake, OLYM, WA Ephemeral Deer Meadow7 measurement 1 year (2012) 

Deer Lake, OLYM, WA Ephemeral Deer Meadow8 measurement 1 year (2012) 

Deer Lake, OLYM, WA Perennial Deer Meadow9 iButton 1 year (2012) 

Deer Lake, OLYM, WA Intermediate Deer Meadow10 measurement 1 year (2012) 

Deer Lake, OLYM, WA Permanent Deer Meadow12 measurement 1 year (2012) 

Potholes, OLYM, WA Intermediate PM1a measurement 1 year (2012) 

Potholes, OLYM, WA Intermediate PM2a measurement 1 year (2012) 

Potholes, OLYM, WA Intermediate PM3a measurement 1 year (2012) 

Potholes, OLYM, WA Permanent PM3b measurement 1 year (2012) 

Potholes, OLYM, WA Intermediate PM4a measurement 1 year (2012) 

Potholes, OLYM, WA Ephemeral PM5a measurement 1 year (2012) 

Potholes, OLYM, WA Intermediate PM6a measurement 1 year (2012) 

Potholes, OLYM, WA Ephemeral PM6c measurement 1 year (2012) 

Potholes, OLYM, WA Permanent PotholeA measurement 1 year (2012) 

Potholes, OLYM, WA Ephemeral PotholeB measurement 1 year (2012) 

Potholes, OLYM, WA Intermediate PotholeC measurement 1 year (2012) 

Potholes, OLYM, WA Permanent PotholeD measurement 1 year (2012) 

Potholes, OLYM, WA Permanent PotholeE measurement 1 year (2012) 

Potholes, OLYM, WA Intermediate PotholeF measurement 1 year (2012) 

Potholes, OLYM, WA Permanent PotholeG measurement 1 year (2012) 

Potholes, OLYM, WA Ephemeral PotholeH measurement 1 year (2012) 

Upper Lena, OLYM, WA Permanent MUL2 measurement 1 year (2012) 

Upper Lena, OLYM, WA Perennial MUL2a measurement 1 year (2012) 

Upper Lena, OLYM, WA Perennial MUL3 measurement 1 year (2012) 

Upper Lena, OLYM, WA Perennial MUL3a measurement 1 year (2012) 



Upper Lena, OLYM, WA Permanent MUL3b measurement 1 year (2012) 

Upper Lena, OLYM, WA Ephemeral MUL4 measurement 1 year (2012) 

Upper Lena, OLYM, WA Perennial MUL7a measurement 1 year (2012) 

Upper Lena, OLYM, WA Perennial MUL8 measurement 1 year (2012) 

Upper Lena, OLYM, WA Permanent MUL9 measurement 1 year (2012) 

Upper Lena, OLYM, WA Perennial MUL10 measurement 1 year (2012) 

Upper Lena, OLYM, WA Permanent MUL11 measurement 1 year (2012) 

Upper Lena, OLYM, WA Ephemeral MUL11a measurement 1 year (2012) 

Upper Lena, OLYM, WA Permanent MUL11b measurement 1 year (2012) 

Upper Lena, OLYM, WA Permanent MUL11c measurement 1 year (2012) 

Upper Lena, OLYM, WA Permanent MUL11d measurement 1 year (2012) 

Upper Lena, OLYM, WA Intermediate MUL11e measurement 1 year (2012) 

Upper Lena, OLYM, WA Permanent MUL11f measurement 1 year (2012) 

Upper Lena, OLYM, WA Perennial MUL11g measurement 1 year (2012) 

Upper Lena, OLYM, WA Ephemeral MUL12a measurement 1 year (2012) 

Upper Lena, OLYM, WA Perennial MUL12b measurement 1 year (2012) 

Upper Lena, OLYM, WA Intermediate MUL13b measurement 1 year (2012) 

Clear Lake, OLYM, WA Perennial SL20 measurement 1 year (2012) 

Clear Lake, OLYM, WA Ephemeral SL20A (Pond V) measurement, iButton 2 years (2000, 2012) 

Clear Lake, OLYM, WA Perennial SL20D measurement 1 year (2012) 

Clear Lake, OLYM, WA Intermediate SL20E measurement 1 year (2012) 

Clear Lake, OLYM, WA Permanent SL20F measurement 1 year (2012) 

Clear Lake, OLYM, WA Permanent SL20H measurement 1 year (2012) 

Clear Lake, OLYM, WA Perennial SL20I (Pond J) measurement 2 years (2000, 2012) 

Clear Lake, OLYM, WA Permanent SL23A (Pond D) measurement 2 years (2000, 2012) 

Clear Lake, OLYM, WA Perennial SL23B measurement 1 year (2012) 

Clear Lake, OLYM, WA Perennial SL23C (Pond Y) measurement 2 years (2000, 2012) 



Clear Lake, OLYM, WA Intermediate SL23D-M measurement 1 year (2012) 

Clear Lake, OLYM, WA Intermediate SL23D-N measurement 1 year (2012) 

Clear Lake, OLYM, WA Ephemeral SL23E measurement 1 year (2012) 

Clear Lake, OLYM, WA Perennial SL23F (Pond K) measurement 2 years (2000, 2012) 

Clear Lake, OLYM, WA Ephemeral SL23G measurement 1 year (2012) 

Clear Lake, OLYM, WA Intermediate SL23H (Pond Q) measurement 1 year (2000, 2012) 

Clear Lake, OLYM, WA Perennial SL23I iButton 1 year (2012) 

Clear Lake, OLYM, WA Ephemeral SL23J iButton 1 year (2012) 

Clear Lake, OLYM, WA Perennial SL23K iButton 1 year (2012) 

Clear Lake, OLYM, WA Perennial SL23L (Pond L) measurement 2 years (2000, 2012) 

Clear Lake, OLYM, WA Perennial SL26 measurement 1 year (2012) 

Clear Lake, OLYM, WA Perennial SL26A measurement 1 year (2012) 

Clear Lake, OLYM, WA Perennial SL26B iButton 1 year (2012) 

Clear Lake, OLYM, WA Intermediate SL27B measurement 1 year (2012) 

Clear Lake, OLYM, WA Intermediate SL27D measurement 1 year (2012) 

Clear Lake, OLYM, WA Intermediate SL27E.1 measurement 1 year (2012) 

Clear Lake, OLYM, WA Ephemeral SL27E.2 measurement 1 year (2012) 

Clear Lake, OLYM, WA Ephemeral SL.3extras measurement 1 year (2012) 

Deschutes NF, OR Perennial Muskrat measurement 2 years (2003, 2006) 

Willamette NF, OR Perennial Penn measurement 3 years (2004-2006) 

Willamette NF, OR Intermediate Unnamed measurement 3 years (2003, 2005, 2006) 

Trinity Alps, CA Intermediate Snowmelt measurement 5 years (2003-2007) 
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Appendix C. NWI Crosswalk to hydrologic classification 
Ephemeral wetlands:  
Value = A: Temporarily Flooded - Surface water present for brief periods during the growing 
season, but the water table usually lies well below the soil surface. Plants that grow both in 
uplands and wetlands are characteristic of this water regime.  
Value = B: Saturated - The substrate is saturated to the surface for extended periods during the 
growing season, but surface water is seldom present.  
Value = J: Intermittently Flooded - The substrate is usually exposed, but surface water is present 
for variable periods without detectable seasonal periodicity. Weeks, months or even years may 
intervene between periods of inundation. The dominant plant communities under this regime 
may change as soil moisture conditions change.  
 
Intermediate wetlands: 
Value = C: Seasonally Flooded - Surface water is present for extended periods especially early in 
the growing season, but is absent by the end of the growing season in most years. The water table 
after flooding ceases is very variable, extending from saturated to a water table well below the 
ground surface.  
Value = D: Seasonally Well-drained - Surface water is present for extended periods especially 
early in the growing season. The water table after flooding ceases falls well below the ground 
surface. (Not used on all maps.)  
Value = E: Seasonally Saturated - Surface water is present for extended periods especially early 
in the growing season, and remains saturated near the surface for most of the growing season. 
(Not used on all maps.)  
Value = F: Semipermanently Flooded - Surface water persists throughout the growing season in 
most years. When surface water is absent, the water table is usually at or very near the land 
surface.  
 
Perennial wetlands: 
Value = G: Intermittently Exposed - Surface water is present throughout the year except in years 
of extreme drought.  
Value = Z: Intermittently Exposed/Permanent - Exhibits features of both Intermittently Exposed 
(G) and Permanent (H) water regimes. (Not used on all maps.)  
 
Permanent wetlands: 
Value = H: Permanently Flooded - Water covers the land surface throughout the year in all 
years.  
 
Did not fit our classification: 
Value = K: Artificially Flooded - The amount and duration of flooding is controlled by means of 
pumps or siphons in combination with dikes or dams. Water and waste-water treatment facilities 
are included in this modifier.  
Value = W: Intermittently Flooded/Temporary - Exhibits features of both Intermittently Flooded 
(J) and Temporary (A) water regimes. (Not used on all maps.)  
Value = Y: Saturated/Semipermanent/Seasonals - Exhibits features of the Saturated (B), 
Semipermanent (F) and Seasonal (C, D and E) water regimes. (Not used on all maps.  



 119 

Appendix D. Top ranked models for the set of models holding 95% of all model support, by 
species and life stage. 
 
Rana cascadae breeding evidence 
AIC Model ΔAICc wAk 
208.8151283 bin~elevation+hydro.class.cons+max.p.emergent+fish 0 0.145101741 
209.3735737 bin~elevation+hydro.class.cons+fish+side.habitat 0.558445383 0.109750813 
210.9093596 bin~elevation+hydro.class.cons+substrate+fish 2.094231335 0.050923244 

210.97057 bin~elevation+PCA+hydro.class.cons+max.p.emergent 2.155441668 0.049388338 
211.2010183 bin~elevation+hydro.class.cons+cobble+fish 2.385889978 0.044013225 
211.2483608 bin~elevation+PCA+hydro.class.cons+fish 2.433232505 0.042983611 
211.3847047 bin~elevation+hydro.class.cons+perc.wooded+fish 2.569576364 0.040150985 
211.5637769 bin~elevation+hydro.class.cons+fish+downed.wood 2.748648595 0.036712264 
211.6388139 bin~elevation+hydro.class.cons+max.p.emergent+side.habitat 2.823685554 0.035360394 
211.9235079 bin~elevation+PCA+hydro.class.cons+side.habitat 3.10837965 0.030668784 
212.1192762 bin~hydro.class.cons+max.p.emergent+fish+side.habitat 3.304147897 0.027809042 
212.4155635 bin~elevation+hydro.class.cons+max.p.emergent+downed.wood 3.600435154 0.023979938 
212.8597856 bin~elevation+PCA+hydro.class.cons+perc.wooded 4.044657299 0.019203768 
212.9141314 bin~elevation+hydro.class.cons+max.p.emergent+perc.wooded 4.099003095 0.018688972 
212.9168793 bin~elevation+hydro.class.cons+max.p.emergent+cobble 4.101750976 0.018663312 
213.0044424 bin~elevation+PCA+hydro.class.cons+downed.wood 4.189314068 0.017863832 
213.1282993 bin~elevation+hydro.class.cons+max.p.emergent+substrate 4.313170956 0.016791112 
213.1810488 bin~elevation+PCA+hydro.class.cons+cobble 4.365920547 0.016354039 
213.4125584 bin~hydro.class.cons+max.p.emergent+substrate+fish 4.597430144 0.014566438 
213.7216392 bin~elevation+hydro.class.cons+substrate+downed.wood 4.906510927 0.012480653 
213.8023149 bin~elevation+hydro.class.cons+side.habitat+downed.wood 4.987186645 0.011987229 
213.8678009 bin~elevation+PCA+hydro.class.cons+substrate 5.05267264 0.011601087 
214.0227788 bin~hydro.class.cons+substrate+fish+side.habitat 5.207650456 0.010736079 
214.0498798 bin~PCA+hydro.class.cons+max.p.emergent+side.habitat 5.234751458 0.010591581 
214.0618838 bin~elevation+hydro.class.cons+substrate+side.habitat 5.246755539 0.0105282 

214.197162 bin~elevation+hydro.class.cons+cobble+side.habitat 5.382033738 0.009839632 
214.3072093 bin~elevation+hydro.class.cons+cobble+downed.wood 5.492081031 0.009312845 

214.398534 bin~PCA+hydro.class.cons+max.p.emergent+fish 5.583405702 0.008897162 
214.4447527 bin~elevation+hydro.class.cons+perc.wooded+side.habitat 5.629624403 0.008693912 

214.549704 bin~hydro.class.cons+max.p.emergent+perc.wooded+fish 5.734575657 0.008249457 
214.8336172 bin~hydro.class.cons+max.p.emergent+fish+downed.wood 6.01848894 0.007157714 
214.8490739 bin~hydro.class.cons+max.p.emergent+cobble+fish 6.03394561 0.00710261 
214.8509389 bin~hydro.class.cons+max.p.emergent+substrate+side.habitat 6.035810605 0.00709599 
214.9840403 bin~elevation+hydro.class.cons+substrate+cobble 6.168911989 0.006639118 
215.0355913 bin~elevation+hydro.class.cons+perc.wooded+substrate 6.220462999 0.006470178 

215.082078 bin~elevation+hydro.class.cons+perc.wooded+downed.wood 6.266949729 0.006321524 
215.1565159 bin~hydro.class.cons+max.p.emergent+substrate+cobble 6.341387607 0.006090568 
215.2449219 bin~hydro.class.cons+substrate+fish+downed.wood 6.42979362 0.00582721 
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215.3441863 bin~hydro.class.cons+max.p.emergent+side.habitat+downed.wood 6.529057989 0.005545053 
215.3492442 bin~hydro.class.cons+max.p.emergent+cobble+side.habitat 6.534115857 0.005531048 
215.3989091 bin~PCA+hydro.class.cons+max.p.emergent+perc.wooded 6.583780851 0.005395389 
215.4008074 bin~hydro.class.cons+max.p.emergent+perc.wooded+side.habitat 6.585679115 0.005390271 
215.4157548 bin~elevation+hydro.class.cons+perc.wooded+cobble 6.600626507 0.005350136 
215.4174332 bin~hydro.class.cons+max.p.emergent+substrate+downed.wood 6.602304947 0.005345648 
215.5235531 bin~PCA+hydro.class.cons+max.p.emergent+substrate 6.708424851 0.005069401 
215.7122113 bin~hydro.class.cons+substrate+cobble+fish 6.897082965 0.00461307 
215.7349977 bin~PCA+hydro.class.cons+max.p.emergent+cobble 6.919869384 0.004560811 
215.7580627 bin~PCA+hydro.class.cons+max.p.emergent+downed.wood 6.942934381 0.004508516 
215.7776273 bin~hydro.class.cons+perc.wooded+substrate+fish 6.962498987 0.004464627 
216.0052849 bin~PCA+hydro.class.cons+substrate+fish 7.190156558 0.003984281 
216.0173227 bin~hydro.class.cons+max.p.emergent+perc.wooded+substrate 7.202194431 0.003960372 
216.2637323 bin~hydro.class.cons+substrate+side.habitat+downed.wood 7.448604002 0.003501296 
216.5410748 bin~PCA+hydro.class.cons+substrate+side.habitat 7.725946534 0.003047928 
216.7133784 bin~hydro.class.cons+substrate+cobble+side.habitat 7.898250151 0.002796336 
217.0703645 bin~hydro.class.cons+max.p.emergent+perc.wooded+downed.wood 8.255236212 0.002339219 

 
 
Ambystoma macrodactylum breeding evidence 
 
AIC Model ΔAICc wAk 
181.0526574 bin~hydro.class.cons+perc.wooded+substrate+cobble 0 0.20778837 
181.4948944 bin~PCA+hydro.class.cons+substrate+cobble 0.442236938 0.166567668 
183.6700824 bin~hydro.class.cons+perc.wooded+substrate+side.habitat 2.617424939 0.056137702 
183.9593769 bin~hydro.class.cons+max.p.emergent+perc.wooded+substrate 2.906719438 0.048577497 
184.0584347 bin~PCA+hydro.class.cons+perc.wooded+substrate 3.005777261 0.046230118 
184.6726671 bin~PCA+hydro.class.cons+cobble+side.habitat 3.620009658 0.034005262 
184.7890643 bin~hydro.class.cons+perc.wooded+cobble+side.habitat 3.736406897 0.032082691 
184.8003744 bin~hydro.class.cons+substrate+cobble+side.habitat 3.747717003 0.031901774 
185.2160496 bin~PCA+hydro.class.cons+max.p.emergent+substrate 4.163392215 0.025915053 
185.2741953 bin~hydro.class.cons+max.p.emergent+substrate+cobble 4.221537866 0.025172476 
185.5372869 bin~PCA+hydro.class.cons+perc.wooded+cobble 4.484629486 0.022069694 
185.8909936 bin~hydro.class.cons+substrate+cobble+downed.wood 4.838336174 0.018492256 
185.9215389 bin~hydro.class.cons+substrate+cobble+fish 4.868881435 0.018211976 
186.0172572 bin~hydro.class.cons+perc.wooded+substrate+downed.wood 4.964599722 0.017360895 
186.0312557 bin~elevation+hydro.class.cons+substrate+cobble 4.978598303 0.017239805 
186.1054041 bin~hydro.class.cons+perc.wooded+substrate+fish 5.052746703 0.016612356 
186.2684786 bin~elevation+hydro.class.cons+perc.wooded+substrate 5.215821187 0.015311582 
186.2685745 bin~PCA+hydro.class.cons+substrate+side.habitat 5.215917111 0.015310847 
186.6314633 bin~PCA+hydro.class.cons+perc.wooded+side.habitat 5.578805861 0.012770236 
186.7256652 bin~PCA+hydro.class.cons+max.p.emergent+cobble 5.673007766 0.012182692 
186.8679021 bin~PCA+hydro.class.cons+substrate+downed.wood 5.815244656 0.011346369 
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186.9552396 bin~PCA+hydro.class.cons+cobble+fish 5.902582121 0.01086155 
187.0762051 bin~PCA+hydro.class.cons+cobble+downed.wood 6.023547658 0.010224086 
187.1118297 bin~elevation+PCA+hydro.class.cons+cobble 6.059172257 0.010043584 
187.1297258 bin~hydro.class.cons+max.p.emergent+perc.wooded+side.habitat 6.077068359 0.009954114 
187.7830091 bin~elevation+hydro.class.cons+perc.wooded+side.habitat 6.730351635 0.007180322 
187.8025235 bin~hydro.class.cons+perc.wooded+fish+side.habitat 6.749866054 0.007110603 
187.8678066 bin~hydro.class.cons+perc.wooded+side.habitat+downed.wood 6.815149157 0.006882249 
187.8937226 bin~PCA+hydro.class.cons+max.p.emergent+perc.wooded 6.841065156 0.006793644 
187.9163103 bin~PCA+hydro.class.cons+substrate+fish 6.863652879 0.00671735 
187.9283778 bin~hydro.class.cons+max.p.emergent+substrate+downed.wood 6.875720324 0.006676941 
187.9378393 bin~elevation+PCA+hydro.class.cons+substrate 6.885181865 0.006645429 
188.3311904 bin~hydro.class.cons+max.p.emergent+perc.wooded+cobble 7.278532939 0.005458935 
188.3691973 bin~elevation+hydro.class.cons+perc.wooded+cobble 7.316539879 0.005356175 
188.4570827 bin~hydro.class.cons+perc.wooded+cobble+fish 7.404425264 0.005125907 
188.4639034 bin~hydro.class.cons+perc.wooded+cobble+downed.wood 7.411245988 0.005108456 
188.8743508 bin~PCA+hydro.class.cons+max.p.emergent+side.habitat 7.821693357 0.004160659 
188.9701992 bin~PCA+hydro.class.cons+perc.wooded+downed.wood 7.917541737 0.003965965 

189.006796 bin~elevation+PCA+hydro.class.cons+perc.wooded 7.954138612 0.003894054 
189.0252676 bin~PCA+hydro.class.cons+perc.wooded+fish 7.972610213 0.003858255 
189.0469631 bin~hydro.class.cons+max.p.emergent+substrate+side.habitat 7.994305688 0.003816628 
189.0650637 bin~hydro.class.cons+cobble+fish+side.habitat 8.012406262 0.003782242 
189.3722236 bin~hydro.class.cons+max.p.emergent+cobble+side.habitat 8.31956622 0.003243772 
189.3731081 bin~hydro.class.cons+cobble+side.habitat+downed.wood 8.320450633 0.003242338 
189.6030413 bin~PCA+hydro.class.cons+max.p.emergent+downed.wood 8.550383918 0.002890207 
189.6079489 bin~elevation+hydro.class.cons+cobble+side.habitat 8.555291452 0.002883124 
189.6408435 bin~hydro.class.cons+max.p.emergent+substrate+fish 8.588186112 0.002836092 

 
 
Ambystoma macrodactylum adult presence 
 
AIC Model ΔAICc wAk 
146.3656039 bin~PCA+perc.wooded+fish+side.habitat 0 0.372647056 
149.5125158 bin~hydro.class.cons+perc.wooded+fish+side.habitat 3.146911882 0.077259957 

150.298154 bin~PCA+perc.wooded+substrate+fish 3.932550065 0.052162128 
150.9105203 bin~PCA+substrate+fish+side.habitat 4.544916373 0.038404458 
151.3790392 bin~PCA+perc.wooded+substrate+side.habitat 5.013435268 0.030383938 
151.4453756 bin~PCA+perc.wooded+fish+downed.wood 5.079771694 0.029392687 
151.4769375 bin~PCA+perc.wooded+cobble+fish 5.111333553 0.028932484 
151.6515424 bin~elevation+PCA+perc.wooded+fish 5.285938413 0.026513725 
151.6706177 bin~PCA+max.p.emergent+perc.wooded+fish 5.30501376 0.026262048 
151.7769579 bin~PCA+perc.wooded+side.habitat+downed.wood 5.411353998 0.024902165 
152.2763509 bin~PCA+perc.wooded+cobble+side.habitat 5.910746959 0.019399713 
152.3004594 bin~PCA+hydro.class.cons+perc.wooded+side.habitat 5.934855424 0.019167268 
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152.3181757 bin~PCA+max.p.emergent+perc.wooded+side.habitat 5.952571762 0.018998231 
152.3425257 bin~elevation+PCA+perc.wooded+side.habitat 5.976921732 0.01876833 
152.3808708 bin~hydro.class.cons+perc.wooded+cobble+side.habitat 6.01526682 0.018411921 
152.5087482 bin~hydro.class.cons+perc.wooded+side.habitat+downed.wood 6.143144208 0.017271533 
152.5631736 bin~hydro.class.cons+max.p.emergent+perc.wooded+side.habitat 6.197569625 0.016807865 
152.6045253 bin~elevation+hydro.class.cons+perc.wooded+side.habitat 6.238921383 0.016463916 
152.8426206 bin~perc.wooded+fish+side.habitat+downed.wood 6.477016674 0.014616096 
152.8848066 bin~max.p.emergent+perc.wooded+fish+side.habitat 6.519202612 0.014311028 

153.143931 bin~hydro.class.cons+perc.wooded+substrate+side.habitat 6.778327087 0.012571951 
153.5347309 bin~perc.wooded+cobble+fish+side.habitat 7.169126905 0.010340501 
153.5541787 bin~elevation+perc.wooded+fish+side.habitat 7.188574757 0.010240438 

154.016314 bin~PCA+hydro.class.cons+perc.wooded+fish 7.650710021 0.00812769 
154.3457646 bin~max.p.emergent+perc.wooded+side.habitat+downed.wood 7.980160671 0.00689331 
154.4313299 bin~elevation+perc.wooded+side.habitat+downed.wood 8.06572599 0.006604616 
154.4854623 bin~perc.wooded+cobble+side.habitat+downed.wood 8.119858315 0.006428252 
154.9011587 bin~perc.wooded+substrate+fish+side.habitat 8.535554787 0.005221864 
154.9203811 bin~PCA+fish+side.habitat+downed.wood 8.554777109 0.005171916 
154.9278548 bin~elevation+max.p.emergent+perc.wooded+side.habitat 8.562250805 0.005152625 
154.9935442 bin~max.p.emergent+perc.wooded+cobble+side.habitat 8.627940205 0.004986138 
155.1511214 bin~PCA+substrate+fish+downed.wood 8.785517489 0.004608364 
155.2723203 bin~elevation+PCA+substrate+fish 8.906716402 0.004337393 
155.2748914 bin~elevation+perc.wooded+cobble+side.habitat 8.909287486 0.004331821 
155.6144062 bin~PCA+substrate+cobble+fish 9.248802299 0.003655492 
155.6605172 bin~PCA+max.p.emergent+substrate+fish 9.294913301 0.003572177 
155.9904684 bin~perc.wooded+substrate+side.habitat+downed.wood 9.624864429 0.0030289 
155.9914367 bin~PCA+substrate+side.habitat+downed.wood 9.625832773 0.003027434 

156.038475 bin~max.p.emergent+perc.wooded+substrate+side.habitat 9.672871023 0.002957062 
156.3076981 bin~PCA+cobble+fish+side.habitat 9.94209413 0.002584636 
156.3150119 bin~PCA+hydro.class.cons+substrate+side.habitat 9.949407945 0.002575201 
156.3697502 bin~elevation+perc.wooded+substrate+side.habitat 10.00414627 0.002505676 

 
 
Ambystoma gracile breeding evidence 
 
AIC Model ΔAICc wAk 
141.1089676 bin~elevation+hydro.class.cons+perc.wooded+fish 0 0.634827453 
145.5333868 bin~hydro.class.cons+max.p.emergent+perc.wooded+fish 4.42441922 0.069487274 
146.4004835 bin~PCA+hydro.class.cons+perc.wooded+fish 5.291515965 0.045041994 
146.5578857 bin~hydro.class.cons+perc.wooded+fish+downed.wood 5.448918078 0.041633045 
146.6461614 bin~hydro.class.cons+perc.wooded+cobble+fish 5.537193802 0.039835415 
146.6537242 bin~hydro.class.cons+perc.wooded+fish+side.habitat 5.544756582 0.039685066 
147.7265681 bin~elevation+max.p.emergent+perc.wooded+fish 6.617600569 0.023209297 
148.3076882 bin~elevation+PCA+perc.wooded+fish 7.198720616 0.017356949 
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148.9040987 bin~elevation+hydro.class.cons+max.p.emergent+perc.wooded 7.795131079 0.012881442 
149.2214143 bin~elevation+PCA+hydro.class.cons+fish 8.112446763 0.010991584 

149.527857 bin~hydro.class.cons+perc.wooded+substrate+fish 8.418889377 0.009430117 
150.0664703 bin~elevation+hydro.class.cons+perc.wooded+side.habitat 8.957502738 0.007203751 
150.1003568 bin~elevation+hydro.class.cons+fish+downed.wood 8.991389253 0.007082724 
150.3948294 bin~elevation+hydro.class.cons+max.p.emergent+fish 9.285861856 0.006113028 
151.1030004 bin~elevation+PCA+hydro.class.cons+perc.wooded 9.994032774 0.004290215 
151.1088979 bin~elevation+hydro.class.cons+perc.wooded+downed.wood 9.999930293 0.004277583 
151.1180009 bin~elevation+hydro.class.cons+perc.wooded+cobble 10.00903331 0.004258158 
151.3342013 bin~PCA+max.p.emergent+perc.wooded+fish 10.22523375 0.003821857 
151.5117765 bin~hydro.class.cons+max.p.emergent+perc.wooded+side.habitat 10.40280895 0.003497151 
151.5838042 bin~elevation+hydro.class.cons+cobble+fish 10.47483663 0.003373446 
151.7775115 bin~hydro.class.cons+max.p.emergent+perc.wooded+downed.wood 10.66854389 0.00306204 
151.7883141 bin~PCA+hydro.class.cons+max.p.emergent+perc.wooded 10.67934653 0.003045545 
151.9094687 bin~elevation+hydro.class.cons+fish+side.habitat 10.80050108 0.002866531 
152.0082919 bin~hydro.class.cons+max.p.emergent+perc.wooded+cobble 10.89932434 0.002728334 
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